Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research discovers independent brain networks control human walking

09.08.2007
Kennedy Krieger Institute Study Enhances Understanding of Brain Plasticity and Motor Skills, Signaling Advancements for Future Rehab Practices

In a study published in the August issue of Nature Neuroscience, researchers at the Kennedy Krieger Institute in Baltimore, Maryland found that there are separate adaptable networks controlling each leg and there are also separate networks controlling leg movements, e.g., forward or backward walking. These findings are contrary to the currently accepted theory that leg movements and adaptations are directed by a single control circuit in the brain. The ability to train the right and left legs independently opens the door to new therapeutic approaches for correcting walking abilities in patients with brain injury (e.g., stroke) and neurological disorders (e.g., cerebral palsy and multiple sclerosis).

Using a split-belt treadmill to separately control the legs, Kennedy Krieger researchers Dr. Amy Bastian and Julia Choi studied forty healthy adults and tracked each person’s ability to learn various walking exercises. Utilizing specialized computer software and infrared tracking devices placed on key joints, researchers found subjects could store different walking patterns for forward versus backward walking simultaneously, with no interference between the two, revealing that separate brain systems control the two directions of walking. Surprisingly, people could also walk easily with one leg moving forward and the other backward, a pattern referred to as “hybrid walking.” Adaptation of hybrid walking, in which varying speeds were applied to legs walking in opposite directions, was found to interfere with subsequent “normal” forward and backward walking. The combined results demonstrate there are distinct brain modules responsible for right/forward, right/backward, left/forward and left/backward walking. Most significantly, these modules can be individually trained, which would be critical for rehabilitation focused on correcting walking asymmetries produced by brain damage.

“The notion that we can leverage the brain’s adaptive capacity and effectively ‘dial in’ the patterns of movement that we want patients to learn is incredibly exciting,” said Dr. Amy Bastian, senior study author and Director of the Motion Analysis Laboratory at the Kennedy Krieger Institute. “These findings significantly enhance our understanding of motor skills, effective therapeutic approaches and the true adaptive nature of the brain.”

The walking adaptations studied here represent a form of short term learning from practicing on this unusual treadmill. Investigators set different speeds for each belt of the treadmill causing subjects to walk in an abnormal limping pattern. However, within 15 minutes subjects adapted and learned to walk smoothly with a normal pattern and rhythm, as verified by computer models. This indicates that the phenomenon of brain plasticity can occur in short intervals. When subjects returned to normal conditions (same speed for the two legs), this adaptation caused an after-effect that resulted in a limp that lasted for five-to-ten minutes as they “unlearned” the correction. Regardless of how hard subjects tried, they were unable to stop this after-effect, because walking patterns are controlled by automatic brain systems that recalibrate themselves according to current conditions.

“As we understand more about the way the brain learns, relearns and adapts in relation to motor skills, physical therapy professionals have a vastly expanding toolbox from which to tailor therapeutic interventions,” explains Gary Goldstein, MD, President and CEO of the Kennedy Krieger Institute. “This study and other research from Kennedy Krieger’s Motion Analysis Laboratory provide a glimpse into the rehabilitative potential made possible through the pairing of our talented researchers and cutting-edge technologies.”

Past studies by Bastian and her colleagues have found that certain types of brain damage interfere with walking ability, while others do not. For example, individuals with damage to the cerebral hemispheres can adapt while those with damage to the cerebellum are rarely able to.

This body of work sheds light on the specificity of walking adaptations and demonstrates that patients with certain types of brain damage can store a new walking pattern in the short term. Based on these findings, Bastian’s goal is to learn how to make that pattern last for an extended period. Currently, Bastian is planning a study of stroke victims in order to test the long-term benefits of split-belt treadmill therapy. She is also studying children with more extreme forms of brain damage, including those that undergo a hemispherectomy, a neurosurgical procedure to treat seizures in which an entire half of the brain is removed. The initial findings are quite promising, showing that these children can adapt in the short term and improve their walking patterns. These and other similar studies are leading researchers down the path to more targeted, rational therapies for patients with brain injuries.

About the Kennedy Krieger Institute
Internationally recognized for improving the lives of children and adolescents with disorders and injuries of the brain and spinal cord, the Kennedy Krieger Institute in Baltimore, MD serves more than 13,000 individuals each year through inpatient and outpatient clinics, home and community services and school-based programs. Kennedy Krieger provides a wide range of services for children with developmental concerns mild to severe, and is home to a team of investigators who are contributing to the understanding of how disorders develop while pioneering new interventions and earlier diagnosis. For more information on Kennedy Krieger Institute, visit www.kennedykrieger.org.
Contact Info
Corrie Allen
202-955-6222
callen@spectrumscience.com

Corrie Allen | EurekAlert!
Further information:
http://www.kennedykrieger.org

More articles from Studies and Analyses:

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

nachricht Urbanization to convert 300,000 km2 of prime croplands
27.12.2016 | Mercator Research Institute on Global Commons and Climate Change (MCC) gGmbH

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

How gut bacteria can make us ill

18.01.2017 | Life Sciences

On track to heal leukaemia

18.01.2017 | Health and Medicine

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>