Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Particle emissions from laser printers might pose health concern

01.08.2007
Certain laser printers used in offices and homes release tiny particles of toner-like material into the air that people can inhale deep into lungs where they may pose a health hazard, scientists are reporting. Their study is scheduled for the August 1 online issue of the American Chemical Society’s Environmental Science & Technology (ES&T), a semi-monthly journal.

Lidia Morawska, Ph.D., and colleagues in Australia classified 17 out of 62 printers in the study as “high particle emitters” because they released such elevated quantities of particles, which the researchers believe to be toner, the ultrafine powder used in laser printers instead of ink to form text and images. One of the printers released particles into an experimental chamber at a rate comparable to the particle emissions from cigarette smoking, the report stated.

Thirty-seven of the 62 printers, on the other hand, released no particles that diminished air quality. Six released only low levels, and 2 medium levels. All printers were monitored in an open office, and the researchers recorded data on three laser printers in an experimental chamber. The study included popular models in the U. S. and Australia sold internationally under the Canon, HP Color Laserjet, Ricoh and Toshiba brand names.

Most of the printer-generated particles detected were ultrafine, Morawska said, explaining that such contaminants are easily inhaled into the smallest passageways of the lungs where they could pose “a significant health threat.” Previous studies have focused on emissions of volatile organic compounds, ozone, and toner particles from office printers and copiers. However, the research left broad gaps in scientific understanding of particle emissions and airborne concentrations of particles, the report noted.

Morawska and colleagues, who are with the Queensland University of Technology in Brisbane, initially were not trying to close that knowledge gap. “It wasn’t an area that we consciously decided to study,” Morawska said in an interview. “We came across it by chance. Initially we were studying the efficiency of ventilation systems to protect office settings from outdoor air pollutants. We soon realized that we were seeing air pollution originating indoors, from laser printers.”

The study found that indoor particle levels in the office air increased fivefold during work hours due to printer use. Printers emitted more particles when operating with new toner cartridges, and when printing graphics and images that require greater quantities of toner.

Funded by Queensland Department of Public Works and The Cooperative Research Centre for Construction Innovation, the ES&T report includes a list of the brands and models in the study classified by amount of particles emitted. As a result of the study, the scientists are calling on government officials to consider regulating emission levels from laser printers. “By all means, this is an important indoor source of pollution,” Morawska said. “There should be regulations.”

The health effects from inhaled ultrafine particles depend on particle composition, but the results can range from respiratory irritation to more severe illnesses, such as cardiovascular problems or cancer, Morawska said. “Even very small concentrations can be related to health hazards,” she said. “Where the concentrations are significantly elevated means there is potentially a considerable hazard.”

Larger particles also could be unhealthy without reaching the deepest parts of the lung. “Because they are larger,” Morawska added, “they contain more mass and can carry more toxins into the body. No matter how you look at it, there could be problems.”

Morawska said that more research on the health effects of inhaling printer-generated particles is needed. As a first step to lower risk, people should ensure that rooms in offices or houses are well ventilated to allow airborne particles to disperse.

Michael Bernstein | EurekAlert!
Further information:
http://www.acs.org

More articles from Studies and Analyses:

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Disarray in the brain
18.12.2017 | Universität zu Lübeck

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

White graphene makes ceramics multifunctional

16.01.2018 | Materials Sciences

Breaking bad metals with neutrons

16.01.2018 | Materials Sciences

ISFH-CalTeC is “designated test centre” for the confirmation of solar cell world records

16.01.2018 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>