Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New studies on goat milk show it is more beneficial to health than cow milk

31.07.2007
Research carried out at the Department of Physiology of the University of Granada (Universidad de Granada [http://www.ugr.es]) has revealed that goat milk has more beneficial properties to health than cow milk. Among these properties it helps to prevent ferropenic anaemia (iron deficiency) and bone demineralisation (softening of the bones).

This project, conducted by Doctor Javier Díaz Castro and directed by professors Margarita Sánchez Campos, Mª Inmaculada López Aliaga and Mª José Muñoz Alférez, focuses on the comparison between the nutritional properties of goat milk and cow milk, both with normal calcium content and calcium enriched, against the bioavailability of iron, calcium, phosphorus and magnesium. To carry out this study, the metabolic balance technique has been used both in rats with experimentally induced nutritional ferropenic anaemia and in a control group of rats.

In order to know how the nutritive utilisation of these minerals may affect their metabolic distribution and destination, the UGR researcher has determined the concentration of these minerals in the different organs involved in their homeostatic regulation and different haematological parameters in relation to the metabolism of the minerals.

Better results with goat milk

Results obtained in the study reveal that ferropenic anaemia and bone demineralisation caused by this pathology have a better recovery with goat milk. Due to the higher bioavailability of iron, calcium, phosphorus and magnesium, the restoration of altered haematological parameters and the better levels of parathyroid hormone (PTH), a hormone that regulates the calcium balance in the organism was found in the rats that consumed this food.

Javier Díaz Castro points out that the inclusion of goat milk with normal or double calcium content in the diet “favours digestive and metabolic utilisation of iron, calcium and phosphorus and their deposit in target organs - parts of the organism to which these minerals are preferably sent - involved in their homeostatic regulation”.

According to this researcher, all these conclusions reveal that regular consumption of goats’ milk – a natural food with highly beneficial nutritional characteristics - “has positive effects on mineral metabolism, recovery from ferropenic anaemia and bone mineralisation in rats. In addition, and unlike observations in cow milk, its calcium enrichment does not interfere in the bioavailability of the minerals studied”.

Although there is no doubt that these findings may be a base for further in depth study of the multiple health benefits of goat milk, the UGR [http://www.ugr.es] researcher warns that “studies in humans are still required in order to confirm the findings obtained in rats and to promote goats’ milk consumption both in the general population and in the population affected by nutritional ferropenic anaemia and pathologies related to bone demineralisation”. Part of the results of this research has been published in the prestigious scientific journals International Dairy Journal and Journal Dairy Science.

Reference:
Dr Javier Díaz Castro. Department of Physiology [http://www.ugr.es/~fisiougr/], University of Granada [http://www.ugr.es].

Tel.: +34 958 24 83 19 / +34 654 57 44 34. Email: javierdc@ugr.es.

Antonio Marín Ruiz | alfa
Further information:
http://prensa.ugr.es/prensa/research/index.php

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>