Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Seeing colors -- New study sheds light on sensory system quirk

26.07.2007
In the psychological phenomenon known as “synesthesia,” individuals’ sensory systems are a bit more intertwined than usual. Some people, for example, report seeing colors when musical notes are played.

One of the most common forms is grapheme-color synesthesia, in which letters or numbers (collectively called “graphemes”) are highlighted with particular colors. Although synesthesia has been well documented, it is unknown whether these experiences, reported as vivid and realistic, are actually being perceived or if they are a byproduct of some other psychological mechanism such as memory.

New research published in the June issue of Psychological Science, a journal of the Association for Psychological Science, sheds some light on the veracity of these perceptions.

Danko Nikolic, a researcher from the Max Planck Institute for Brain Research in Frankfurt, Germany, and his colleagues relied on a variation of a classic psychological method known as the Stroop task to test this. In this task, participants must name the color of the font that a color word is printed in. For example, if the word “blue” was printed in red ink, the participant would say “red” — a moderately difficult task that requires some mental gymnastics.

To understand Nikolic’s version of the experiment, a rudimentary understanding of color perception is required: When anyone views a particular color, specific neurons in the visual cortex area of our brain are activated. These specific neurons will deactivate, however, if a color from the opposite end of the spectrum is presented. So, any neuron activated when the color blue is present will deactivate when it’s exact opposite, yellow, comes into the visual field.

Using this logic, Nikolic presented grapheme-color synesthetes with their five most color eliciting letters or numbers. The color of the letter or number was either the same as its common association (congruent), different but not completely opposite of the color association (incongruent independent), or on the opposite end of the spectrum from the associated color (opponent incongruent). The researchers then measured how long it took the participants to name the color of the grapheme.

As expected, opponent incongruent colors made it quite difficult for individuals with grapheme-color synesthesia to respond quickly. It took participants much longer to name opponent incongruent colors than independent incongruent colors. Congruent colors — colors that matched the association — actually facilitated the process of naming the colors.

In a separate experiment, the researchers found that this color-opponency system did not work for memories. They presented the same participants with pictures of objects that a color is commonly associated with (a lemon, for example). But like the previous experiment, the objects were in unexpected colors. Reaction times in this experiment were significantly less impeded by the color change and did not differ from reaction times of control subjects who were not synesthetes. Coupled with the results from the first experiment, these findings suggest that synesthetic colors are perceived in a realistic way, just as synesthetes report.

Author Contact: Danko Nikolic danko@mpih-frankfurt.mpg.de

Jesse Erwin | EurekAlert!
Further information:
http://www.psychologicalscience.org

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>