Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Seeing colors -- New study sheds light on sensory system quirk

26.07.2007
In the psychological phenomenon known as “synesthesia,” individuals’ sensory systems are a bit more intertwined than usual. Some people, for example, report seeing colors when musical notes are played.

One of the most common forms is grapheme-color synesthesia, in which letters or numbers (collectively called “graphemes”) are highlighted with particular colors. Although synesthesia has been well documented, it is unknown whether these experiences, reported as vivid and realistic, are actually being perceived or if they are a byproduct of some other psychological mechanism such as memory.

New research published in the June issue of Psychological Science, a journal of the Association for Psychological Science, sheds some light on the veracity of these perceptions.

Danko Nikolic, a researcher from the Max Planck Institute for Brain Research in Frankfurt, Germany, and his colleagues relied on a variation of a classic psychological method known as the Stroop task to test this. In this task, participants must name the color of the font that a color word is printed in. For example, if the word “blue” was printed in red ink, the participant would say “red” — a moderately difficult task that requires some mental gymnastics.

To understand Nikolic’s version of the experiment, a rudimentary understanding of color perception is required: When anyone views a particular color, specific neurons in the visual cortex area of our brain are activated. These specific neurons will deactivate, however, if a color from the opposite end of the spectrum is presented. So, any neuron activated when the color blue is present will deactivate when it’s exact opposite, yellow, comes into the visual field.

Using this logic, Nikolic presented grapheme-color synesthetes with their five most color eliciting letters or numbers. The color of the letter or number was either the same as its common association (congruent), different but not completely opposite of the color association (incongruent independent), or on the opposite end of the spectrum from the associated color (opponent incongruent). The researchers then measured how long it took the participants to name the color of the grapheme.

As expected, opponent incongruent colors made it quite difficult for individuals with grapheme-color synesthesia to respond quickly. It took participants much longer to name opponent incongruent colors than independent incongruent colors. Congruent colors — colors that matched the association — actually facilitated the process of naming the colors.

In a separate experiment, the researchers found that this color-opponency system did not work for memories. They presented the same participants with pictures of objects that a color is commonly associated with (a lemon, for example). But like the previous experiment, the objects were in unexpected colors. Reaction times in this experiment were significantly less impeded by the color change and did not differ from reaction times of control subjects who were not synesthetes. Coupled with the results from the first experiment, these findings suggest that synesthetic colors are perceived in a realistic way, just as synesthetes report.

Author Contact: Danko Nikolic danko@mpih-frankfurt.mpg.de

Jesse Erwin | EurekAlert!
Further information:
http://www.psychologicalscience.org

More articles from Studies and Analyses:

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>