Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists a step closer to understanding how anaesthetics work in the brain

20.07.2007
An important clue to how anaesthetics work on the human body has been provided by the discovery of a molecular feature common to both the human brain and the great pond snail nervous system, scientists say today. Researchers hope that the discovery of what makes a particular protein in the brain sensitive to anaesthetics could lead to the development of new anaesthetics with fewer side effects.

The study focuses on a particular protein found in neurons in the brain, known as a potassium channel, which stabilises and regulates the voltage across the membrane of the neuron. Communication between the millions of neurons in the brain – which is the basis of human consciousness and perception, including perception of pain - involves neurons sending nerve impulses to other neurons. In order for this to happen, the stabilising action of the potassium channel has to be overcome. Earlier studies on great pond snails by the same team identified that anaesthetics seemed to selectively enhance the regulating action of the potassium channel, preventing the neuron from firing at all – meaning the neuron was effectively anaesthetised.

The new research has identified a specific amino acid in the potassium channel which, when mutated, blocks anaesthetic activation. Lead author, Biophysics Professor Nick Franks from Imperial College London, explains how this will allow the importance of the potassium channel in anaesthetic action to be established:

“We’ve known for over 20 years now that these potassium channels in the human brain may be important anaesthetic targets. However, until now, we’ve had no direct way to test this idea. Because a single mutation can block the effects of anaesthetics on this potassium channel without affecting it in any other way, it could be introduced into mice to see if they also become insensitive to anaesthetics. If they do, then this establishes the channel as a key target.”

The group carried out their new study, published in the 20 July issue of the Journal of Biological Chemistry, by cloning the potassium channel from a great pond snail and then making a series of chimeric channels – part snail and part human. The chimeras were used to identify the location of the precise amino acid to which the anaesthetic binds on the potassium channel, giving the team a clearer picture than ever before of the precise mechanism by which anaesthetics work.

This kind of research, explains Professor Franks, is important because understanding exactly how anaesthetics work may pave the way for the development of a new generation of anaesthetics which solely affect specific anaesthetic targets, which could potentially reduce the risks and side effects associated with current anaesthetics.

“At the moment, anaesthetics have many unwanted side-effects on the human body such as nausea and effects on the heart. This is because our current drugs are relatively non-selective and bind to several different targets in the body. A better understanding of how anaesthetics exert their desirable effects could lead to much more specific, targeted alternatives being developed, which could greatly reduce these problems,” he said.

Danielle Reeves | alfa
Further information:
http://www.imperial.ac.uk

More articles from Studies and Analyses:

nachricht Antarctic Ice Sheet mass loss has increased
14.06.2018 | Technische Universität Dresden

nachricht WAKE-UP provides new treatment option for stroke patients | International study led by UKE
17.05.2018 | Universitätsklinikum Hamburg-Eppendorf

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

A sprinkle of platinum nanoparticles onto graphene makes brain probes more sensitive

15.06.2018 | Materials Sciences

100 % Organic Farming in Bhutan – a Realistic Target?

15.06.2018 | Ecology, The Environment and Conservation

Perovskite-silicon solar cell research collaboration hits 25.2% efficiency

15.06.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>