Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists a step closer to understanding how anaesthetics work in the brain

An important clue to how anaesthetics work on the human body has been provided by the discovery of a molecular feature common to both the human brain and the great pond snail nervous system, scientists say today. Researchers hope that the discovery of what makes a particular protein in the brain sensitive to anaesthetics could lead to the development of new anaesthetics with fewer side effects.

The study focuses on a particular protein found in neurons in the brain, known as a potassium channel, which stabilises and regulates the voltage across the membrane of the neuron. Communication between the millions of neurons in the brain – which is the basis of human consciousness and perception, including perception of pain - involves neurons sending nerve impulses to other neurons. In order for this to happen, the stabilising action of the potassium channel has to be overcome. Earlier studies on great pond snails by the same team identified that anaesthetics seemed to selectively enhance the regulating action of the potassium channel, preventing the neuron from firing at all – meaning the neuron was effectively anaesthetised.

The new research has identified a specific amino acid in the potassium channel which, when mutated, blocks anaesthetic activation. Lead author, Biophysics Professor Nick Franks from Imperial College London, explains how this will allow the importance of the potassium channel in anaesthetic action to be established:

“We’ve known for over 20 years now that these potassium channels in the human brain may be important anaesthetic targets. However, until now, we’ve had no direct way to test this idea. Because a single mutation can block the effects of anaesthetics on this potassium channel without affecting it in any other way, it could be introduced into mice to see if they also become insensitive to anaesthetics. If they do, then this establishes the channel as a key target.”

The group carried out their new study, published in the 20 July issue of the Journal of Biological Chemistry, by cloning the potassium channel from a great pond snail and then making a series of chimeric channels – part snail and part human. The chimeras were used to identify the location of the precise amino acid to which the anaesthetic binds on the potassium channel, giving the team a clearer picture than ever before of the precise mechanism by which anaesthetics work.

This kind of research, explains Professor Franks, is important because understanding exactly how anaesthetics work may pave the way for the development of a new generation of anaesthetics which solely affect specific anaesthetic targets, which could potentially reduce the risks and side effects associated with current anaesthetics.

“At the moment, anaesthetics have many unwanted side-effects on the human body such as nausea and effects on the heart. This is because our current drugs are relatively non-selective and bind to several different targets in the body. A better understanding of how anaesthetics exert their desirable effects could lead to much more specific, targeted alternatives being developed, which could greatly reduce these problems,” he said.

Danielle Reeves | alfa
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>