Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

PET scan shows during treatment if radiation is shrinking lung tumor

19.07.2007
Finding suggests treatment could be changed early if tumor not responding

Lung cancer patients may not need to wait till their radiation treatment is over to know if it worked. A PET scan several weeks after starting radiation treatment for lung cancer can indicate whether the tumor will respond to the treatment, according to a new study by researchers at the University of Michigan Comprehensive Cancer Center.

Traditionally, PET, or positron emission tomography, has been used after radiation treatment for lung cancer to assess whether the tumor responded to treatment and whether the patients will have a chance of being cured. Using PET several weeks into treatment, researchers found a strong correlation between tumor responses during treatment and response three months after completion of the treatment. This could potentially allow doctors to change the radiation treatment plan before treatment ends to improve the outcome.

Results of the study appear in the July 20 issue of the Journal of Clinical Oncology.

“This demonstrates that PET scans can be performed earlier during the course of radiation treatment, which will allow us to modify the treatment regimen before the treatment is completed. Our sample size was small, but the results are very promising,” says lead study author Feng-Ming Kong, M.D., Ph.D., assistant professor of radiation oncology at the U-M Medical School.

In a pilot study of 15 people with early-stage non-small-cell lung cancer, researchers administered FDG-PET scans before beginning radiation therapy, three to four weeks into treatment and three months after completing treatment. An FDG-PET scan uses radioactive labeled glucose, which is drawn to cells that are being metabolized quickly. If a tumor is responding to radiation treatment, it would show decreased FDG activity in the cells.

The concern in the past has been that normal lung tissue reacts to the radiation and may be in the way of determining through PET scan whether the tumor is shrinking. Kong’s study found this was not an issue.

“The confounding effect on normal tissue is not as significant during treatment as it is after treatment, which is a big surprise. This is the part I’m most excited about: The confounding effect is actually more remarkable after the treatment. That’s counter to our traditional assumptions. We always assumed the confounding effect would be worse during treatment,” Kong says. She says this finding makes sense, as normal lung tissue is slow to react to the assault of radiation therapy and typically there is a delay before lung inflammations or other problems develop.

“The PET scan is better to perform during the course of treatment instead of months after treatment. It avoids the normal tissue confounding effect and allows the radiation therapist to modify the doses if necessary,” Kong says.

The researchers are continuing to study PET scans in a larger number of patients to verify the pilot findings. The next step is to assess whether changing the treatment regimen based on mid-treatment PET scan findings would lead to better tumor control and survival rates. If continued studies bear out the initial data, Kong is hopeful this work could eventually lead to a change in standard practice guidelines regarding PET for lung cancer.

Nicole Fawcett | EurekAlert!
Further information:
http://www.mcancer.org

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>