Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

PET scan shows during treatment if radiation is shrinking lung tumor

19.07.2007
Finding suggests treatment could be changed early if tumor not responding

Lung cancer patients may not need to wait till their radiation treatment is over to know if it worked. A PET scan several weeks after starting radiation treatment for lung cancer can indicate whether the tumor will respond to the treatment, according to a new study by researchers at the University of Michigan Comprehensive Cancer Center.

Traditionally, PET, or positron emission tomography, has been used after radiation treatment for lung cancer to assess whether the tumor responded to treatment and whether the patients will have a chance of being cured. Using PET several weeks into treatment, researchers found a strong correlation between tumor responses during treatment and response three months after completion of the treatment. This could potentially allow doctors to change the radiation treatment plan before treatment ends to improve the outcome.

Results of the study appear in the July 20 issue of the Journal of Clinical Oncology.

“This demonstrates that PET scans can be performed earlier during the course of radiation treatment, which will allow us to modify the treatment regimen before the treatment is completed. Our sample size was small, but the results are very promising,” says lead study author Feng-Ming Kong, M.D., Ph.D., assistant professor of radiation oncology at the U-M Medical School.

In a pilot study of 15 people with early-stage non-small-cell lung cancer, researchers administered FDG-PET scans before beginning radiation therapy, three to four weeks into treatment and three months after completing treatment. An FDG-PET scan uses radioactive labeled glucose, which is drawn to cells that are being metabolized quickly. If a tumor is responding to radiation treatment, it would show decreased FDG activity in the cells.

The concern in the past has been that normal lung tissue reacts to the radiation and may be in the way of determining through PET scan whether the tumor is shrinking. Kong’s study found this was not an issue.

“The confounding effect on normal tissue is not as significant during treatment as it is after treatment, which is a big surprise. This is the part I’m most excited about: The confounding effect is actually more remarkable after the treatment. That’s counter to our traditional assumptions. We always assumed the confounding effect would be worse during treatment,” Kong says. She says this finding makes sense, as normal lung tissue is slow to react to the assault of radiation therapy and typically there is a delay before lung inflammations or other problems develop.

“The PET scan is better to perform during the course of treatment instead of months after treatment. It avoids the normal tissue confounding effect and allows the radiation therapist to modify the doses if necessary,” Kong says.

The researchers are continuing to study PET scans in a larger number of patients to verify the pilot findings. The next step is to assess whether changing the treatment regimen based on mid-treatment PET scan findings would lead to better tumor control and survival rates. If continued studies bear out the initial data, Kong is hopeful this work could eventually lead to a change in standard practice guidelines regarding PET for lung cancer.

Nicole Fawcett | EurekAlert!
Further information:
http://www.mcancer.org

More articles from Studies and Analyses:

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>