Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study finds hereditary link to premenstrual depression

18.07.2007
A specific genetic variation may be tied to an increased risk for severe premenstrual depression, scientists at the University of North Carolina at Chapel Hill and the National Institute of Mental Health have found.

Known medically as premenstrual dysphoric disorder, or PMDD, this psychiatric condition affects roughly 8 percent of women in their childbearing years. It's characterized by bouts of major depression and/or anxiety and severe irritability during the second half of the menstrual cycle. Symptoms subside with the onset of each menstrual period.

While PMDD has been thought to be linked to hormonal changes over the course of the menstrual cycle, until now an explanation for the susceptibility to hormone-related mood changes has been elusive. "Our initial hope in the study was that by looking at steroid-related genes like those for receptors for steroid hormones such as estrogen, we would be able to find gene differences that might explain why some women have these mood disorders and others don't," said Dr. David R. Rubinow, the study's senior author and the Meymandi distinguished professor and chair of psychiatry at UNC School of Medicine. "This study may begin to provide important clues to the nature of that susceptibility."

The study is the first to identify a genetic variation linked to a mood disorder associated with endocrine changes during the menstrual cycle, Rubinow said. The results will appear in an upcoming print edition of the journal Biological Psychiatry and were published online June 30, 2007. The study was supported by funds from the Intramural Research Program at the National Institute of Mental Health (NIMH).

The research involved 91 women for whom the authors prospectively confirmed a diagnosis of PMDD over at least three months. Another 56 women who had no history of mood disorders related to the menstrual cycle served as a comparison group. All the women provided blood samples for genetic analysis.

The team discovered four specific genetic variants, called single nucleotide polymorphisms, in one of the two genes that encode the estrogen receptor. The variants, which are differences in strings of DNA nucleotides A, G, C, or T, were identified in the estrogen receptor alpha gene, ESR1.

Compared to the control group, women with PMDD were significantly more likely to have the ESR1 gene variants, the study found.

"While these are preliminary findings that require replication in larger studies, we would argue that this may explain part of the variance among women in the susceptibility to developing this mood disorder," Rubinow said. "Studies have shown that PMDD is characterized by abnormal sensitivity to reproductive steroids like estrogen. As a receptor for the hormone that can trigger the onset of PMDD symptoms, ESR1 has clear physiologic relevance for this disorder."

The authors acknowledge that as with other complex genetic disorders, the contribution to PMDD of polymorphisms in a single gene may not be large. In addition, they also noted that the findings may be telling us more about the control group.

These women, who have no history of psychiatric problems or menstrual cycle-related symptoms, may have gene variants that protect against PMDD. According to Rubinow, "this is equally interesting because it may help us to understand resilience and protection, which are also very important."

Dr. Susan S. Girdler, professor of psychiatry and director of the UNC Psychiatry Stress and Health Research Program, pointed out that the severity of PMDD symptoms are as great or can be as great as those of women with full-blown major depression or major anxiety disorder. "But what makes them different is that the symptoms are very time-limited and linked strongly with the women's menstrual cycle."

Girdler emphasizes that to qualify for PMDD, symptoms must be severe enough to interfere with everyday functioning - to disrupt relationships, result in social withdrawal, even prompt thoughts of suicide. "We are talking about women who meet very stringent diagnostic criteria for PMDD. This is not the garden variety PMS."

Les Lang | EurekAlert!
Further information:
http://www.unc.edu

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>