Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Research study describes the role part of the brain plays in memory

A research with experimental rats carried out by the Institute of Neuroscience of the UAB describes the brain region connected to how our declarative memory functions. According to this experiment, part of the prefrontal cortex plays a key role in the social transmission of food preference. This research has helped learn more about how this type of memory functions. In the future, this information could be useful to find new treatment for diseases that affect the memory, such as Alzheimer's disease.

Declarative memory is described as a flexible, conscience and associative type of memory (i.e., it is based on relations between different stimuli). It differs from other types of memories that allow us to recall effective or emotionally-charged data, or carry out processes such as riding a bicycle or playing an instrument. Declarative memory allows us to remember things such as specific moments of our lives, names of people, what we ate for lunch, the capitals of the world, etc. The malfunctioning of this type of memory is one of the most common symptoms found in those suffering from Alzheimer's disease.

A useful model from which to learn about how declarative memory functions is the social transmission of food preference. In other species, this task is connected to the survival of the species and plays a crucial role in their evolution. In this research, the social transmission of food preference was carried out with experimental rats.

When one rodent sniffs another rodent's snout right after the second one has eaten, the first one will later choose to eat the same exact food. Animals learn to remember what their congeners eat and, in that way, lower the risk of eating new foods that could be harmful to them. In addition, they must later use this information acquired during a brief episode of social interaction in very different circumstances. Therefore, they need the flexible expression of memory, which is one of the main traits of declarative memory.

This task depends on learning how to associate smells, a function that is commanded by a specific region of the brain, the nucleus basalis magnocellularis (NBM), which produces acetylcholine (a neurotransmitter that "transfers information" from one neurone to another through synapses). This chemical substance is essential in making the memory work correctly. The nucleus basalis magnocellularis equivalent in humans is the nucleus basalis Meynert. Precisely this is one of the regions of the brain that shown signs of degeneration among those who suffer from Alzheimer's (and who are often treated with drugs that help to produce acetylcholine).

The acetylcholine produced by the nucleus basalis is transferred to other regions of the brain, where it is "recognised" by receptor molecules. The research team examined the possibility of one part of the brain, the prelimbic prefrontal cortex, being linked to the social transmission of food preference. To do so, they applied a chemical compound to the experimental rats that neutralised the acetylcholine receptors (muscarinic cholinergic receptor) of this region. By blocking the receptor, the effect of the neurotransmitter was also neutralised and the changes in the animals' behaviour were observed.

The results demonstrated that the social transmission of food preference was clearly affected after neutralising the acetylcholine receptors. Researchers also verified that the effects were not due to other aspects that could alter the experiment, such as lack of olfactory perception, motivation or social interaction. The results therefore suggest that the prelimbic prefrontal cortex, via the use of acetylcholine, regulates cognitive operations (e.g. flexibility in behaviour, attention or strategic planning) that could be needed to correctly express social transmission of food preference, and therefore necessary for our declarative memory.

Octavi López Coronado | alfa
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>