Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Neuroscientist comments on stem cell study's success in helping primates with Parkinson's

12.07.2007
A University of South Florida neuroscientist reports that the cutting-edge research study of human stem cells in primates with Parkinson’s disease is compelling on several fronts – particularly how the transplanted cells did their job of easing disease symptoms.

Paul R. Sanberg, DSc, PhD, Distinguished Professor of Neurosurgery and Director of the Center for Aging and Brain Repair at USF Health, wrote the commentary “Neural Stem Cells for Parkinson’s Disease: To Protect and Repair” published July 9 in the “Early Edition” online version of journal Proceedings of the National Academy of Sciences of the United States of America (PNAS). The expert commentary (see http://www.pnas.org/cgi/reprint/0704704104v1) is a companion piece to the study conducted by Gene Redmond and colleagues at Yale and Harvard Universities and the Burnham Institute.

That NIH-funded study showed that only a small number of stem cells turned into dopamine-producing cells – not enough to improve the primates’ function by replacing missing neurons. Instead, some stem cells turned into astrocytes, a supportive brain cell that produces neuron-nourishing chemicals. The researchers also identified in the brains of the primate recipients a significant amount of dopamine-producing neurons that were not derived from stem cells. The results suggest that stem cells may actually trigger the brain’s own self-repair mechanisms by pumping out molecules that boost nerve survival and blood vessel development and decrease neural degeneration.

“We at the Center for Aging and Brain Repair at USF Health have been arguing, for some time now, that stem cells are important for brain repair because they provide growth factors and because they send signals to the brain to help it repair itself,” Dr. Sanberg said. “This study in primates showed the same effects — that the stem cells are there to act as facilators of repair versus the original hypothesis that stem cells are transplanted to merely replace an injured cell.”

Dr. Sanberg said the study has relevance to all audiences. “This was one of the first studies to look at stem cells in primates with Parkinson’s disease. It’s the first step in translating that research,” he said. “We hear about new sources of stem cells monthly, but how we take those cells and treat disease is going to be a significant amount of translational work. This is one of the first studies that starts that process — looking at primates before going into people with Parkinson’s disease.”

While the transplanted cells appeared not to form tumors following transplant, Dr. Sanberg said the translational research in primates raises questions that need to be addressed before moving to human trials, including determining the most effective cell dosing and brain sites to target. “Pending further preclinical studies,” he writes in the commentary, “the results so far from the current study are supportive for developing a safe and effective stem cell treatment for Parkinson’s disease.”

Dr. Sanberg’s commentary and the study it highlights will also be published in the magazine edition of PNAS, a prestigious publication with a global audience. PNAS has been a resource for multidisciplinary research since 1914. Its online edition, where Dr. Sanberg’s commentary appears this week, receives nearly 6 million e-visitor “hits” per month. Content includes research reports, commentaries, reviews, perspectives, colloquium papers, and actions of the Academy. Coverage in PNAS spans the biological, physical, and social sciences.

Dr. Sanberg also commented on the PNAS study of neural stem cells in Parkinson’s primates for an article appearing June 11 in Nature.com.

- USF Health -

USF Health is a partnership of the University of South Florida’s colleges of medicine, nursing, and public health; the schools of biomedical sciences and physical therapy & rehabilitation sciences; and the USF Physicians Group. It is a partnership dedicated to the promise of creating a new model of health and health care. One of the nation’s top 63 public research universities as designated by the Carnegie Foundation for the Advancement of Teaching, USF received more than $310 million in research contracts and grants last year.

Anne DeLotto Baier | EurekAlert!
Further information:
http://www.usf.edu

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>