Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Illinois-based study of energy crops finds miscanthus more productive than switchgrass

11.07.2007
Findings presented in Chicago at ASPB Annual Meeting on July 10

At the annual meeting of the American Society of Plant Biologists in Chicago (July 7-11, 2007), scientists will present findings on how to economically and efficiently produce plant crops suitable for sustainable bioenergy. Improving the production of such biomass is important because it should significantly ease and eventually replace dependence on petroleum-based fuels. Biomass is plant material, vegetation or agricultural waste used as fuel.

Converting biomass into biofuels can be costly and slow. Two crops, both classified as C4 perennial grasses, have been studied extensively to determine how best to improve costs and production rates. Switchgrass (Panicum virgatum) has been trialed across the United States. Miscanthus (Miscanthus x giganteus) has been studied throughout the European Union. Both show great promise, but until now, nobody has been sure which crop is more efficacious. The study completed by Frank Dohleman of the Plant Biology Department at University of Illinois at Urbana-Champaign and his colleagues, is the first to compare the productivity of the two grasses in side-by-side field trials. Results from trials throughout Illinois show that Miscanthus is more than twice as productive as switchgrass.

Dohleman’s team, which included Dafu Wang, Andrew D.B. Leakey & Stephen P. Long also of University of Illinois, along with Emily A. Heaton of Ceres Inc., theorized that Miscanthus produces more usable biomass than switchgrass because of these three key attributes:

1. Miscanthus can gain greater amounts of photosynthetic carbon per unit of leaf area
2. Miscanthus has a greater leaf area
3. Miscanthus has a longer growing season.
The research team measured the amount of gas exchanged on the upper canopy of Miscanthus leaves from pre-dawn to post-dusk on 20 dates in the 2005 and 2006 growing seasons. The averages from two years’ data showed that Miscanthus gained 33% more carbon than switchgrass. Integrated measurements also showed that the Miscanthus leaf area was 45% greater than switchgrass and that Miscanthus plants grew an average of eleven days longer than switchgrass. This extended growing season and accompanying lower temperatures proved to further boost the photosynthetic activity of Miscanthus. Specifically, pyruvate Pi dikinase was found to be expressed at higher rates when ambient temperatures are lower. This enzyme supports C4 photosynthesis in Miscanthus.

Unraveling the mystery of why Miscanthus is the more productive crop will enable researchers to engineer this and other potential bioenergy crops. These developments will increase production options as well as support efforts within biofuel research and industry to work with non-food based biomass resources.

Brian Hyps | EurekAlert!
Further information:
http://www.aspb.org

More articles from Studies and Analyses:

nachricht Disarray in the brain
18.12.2017 | Universität zu Lübeck

nachricht Amputees can learn to control a robotic arm with their minds
28.11.2017 | University of Chicago Medical Center

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Error-free into the Quantum Computer Age

A study carried out by an international team of researchers and published in the journal Physical Review X shows that ion-trap technologies available today are suitable for building large-scale quantum computers. The scientists introduce trapped-ion quantum error correction protocols that detect and correct processing errors.

In order to reach their full potential, today’s quantum computer prototypes have to meet specific criteria: First, they have to be made bigger, which means...

Im Focus: Search for planets with Carmenes successful

German and Spanish researchers plan, build and use modern spectrograph

Since 2016, German and Spanish researchers, among them scientists from the University of Göttingen, have been hunting for exoplanets with the “Carmenes”...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Single-photon detector can count to 4

18.12.2017 | Information Technology

Quantum memory with record-breaking capacity based on laser-cooled atoms

18.12.2017 | Physics and Astronomy

How much soil goes down the drain -- New data on soil lost due to water

18.12.2017 | Agricultural and Forestry Science

VideoLinks
B2B-VideoLinks
More VideoLinks >>>