Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U-M, Israeli scientists report major advance in search for genes associated with colon cancer

09.07.2007
Single variation on chromosome 8 may account for sizable percentage of cases

A 10-year study involving thousands of Israeli Jews and Arabs, led by researchers from American and Israeli institutions, has yielded important new information in the search for the genes that make a person more likely to develop colon cancer.

In a paper to be published in the July issue of Cancer Biology and Therapy, the international research team reports finding a significant link between genetic variation in a single region of human chromosome 8 and the risk of colorectal cancer.

The link was found by detailed comparisons of genetic material from thousands of colon cancer patients and non-patients, and by evaluating the incidence of colon cancer among the immediate family members of colon cancer patients.

In all, people who carry the specific genetic variation, called a marker, were found to be 23 percent more likely to have colon cancer than individuals without the marker. The researchers estimate that this single genetic variation might account for 14 percent of colorectal cancer cases in Israel, where colon cancer is the leading cause of cancer deaths. The specific marker is called the C allele of rs10505477.

Three other research teams are reporting similar findings today in the journal Nature Genetics, having simultaneously found their way to the same small area of chromosome 8, called 8q24, in the search for colon cancer genetic links. The fact that these studies were performed among other populations around the world suggests that this one genetic marker is highly influential across ethnic groups.

The new Cancer Biology and Therapy paper is by an international group of scientists from the University of Michigan Medical School and U-M School of Public Health, the Catalan Institute of Oncology in Spain, the CHS National Israeli Cancer Control Center and Technion - the Israel Institute of Technology.

It’s the product of an ongoing Michigan-Israel collaboration, the Molecular Epidemiology of Colorectal Cancer project, which for 10 years has searched for clues to colon cancer’s genetic roots using samples from large numbers of people in Israel with known ancestral heritage. The project is funded by the National Cancer Institute, with additional funding from the Irving Weinstein Foundation.

The researchers compared the genetic makeup and family history of more than 1,800 colorectal cancer patients with that of 1,900 healthy people with the same breakdown of age, gender and ethnicity - either Ashkenazi Jew, Sephardic Jew or Arab/non-Jew. Samples of tumor tissue from many cancer patients were also tested. The genetic link between the marker and colon cancer was especially strong among patients diagnosed with colon cancer at a young age, under 50 years.

Stephen Gruber, M.D., Ph.D., the co-leader of the Michigan-Israeli team and first author of the new paper, says that the new finding is particularly interesting when considered alongside recent discoveries in the genetics of prostate and breast cancer.

“The same genetic region that predisposes to colon cancer has also recently been shown to be an important region predisposing to breast cancer and prostate cancer,” he says. “The specific genetic cause for this joint susceptibility to three different cancers has not yet been discovered, but several groups are working to close in on the mechanism that might cause these cancers.”

Gruber is an associate professor of internal medicine and of human genetics in the U-M Medical School, and of epidemiology in the U-M School of Public Health. He directs the Cancer Genetics program in the U-M Comprehensive Cancer Center, which focuses on inherited cancer risks.

Genetic discovery in Israel through MECC has already proven highly informative. Senior author Gad Rennert M.D., Ph.D., of the Carmel Medical Center and the B. Rappaport Faculty of Medicine at Technion in Haifa, Israel, says “The study of populations in Israel has been shown to be exceptionally fruitful in contributing to knowledge about the genetics of leading cancers. This is due to the unique characteristics of the population and our ability to study it in a representative manner.”

Unraveling the mysteries of the susceptibility to disease is moving rapidly since the publication of the complete sequence of the human genome in 2003. Says Gruber, “The mystery of the relationship between our genetic code and disease is now starting to become clear, and many scientists are turning to the same chapter to find important clues to colorectal cancer.” He and his colleagues plan to continue their effort to zero in on the genetic variations involved in cancer.

While there is not yet a screening test for the genetic variation that was pinpointed in the study, Gruber and his co-authors emphasize that genetic testing is available for other known genetic variations linked to colorectal cancer. People with a strong family history of colon cancer, especially cases that began when relatives were younger than age 50, should get genetic counseling and have colonoscopies or other screening tests starting earlier in life than age 50.

“Colon cancer is one of the most common cancers in the United States, and the good news is that it’s largely preventable with early screening,” says Gruber. The American Cancer Society estimates that some 150,000 new cases of colon cancer will be diagnosed in 2007, and more than 50,000 deaths from colorectal cancer will occur.

Although most cancers are not "inherited," some families are particularly susceptible to cancer and may benefit from early detection or other risk reduction strategies. People concerned about a family history of cancer, or those who have been diagnosed with colon cancer before age 50 or after having two or more relatives diagnosed with the disease, should talk to their doctor about the possible benefits of genetic counseling, Gruber says. Counseling can be done for both patients and family members.

Nicole Fawcett | EurekAlert!
Further information:
http://www.umich.edu

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>