Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Amoebae control cheating by keeping it in the family

09.07.2007
Study shows social amoeba's association with kin controls single-celled cheaters

No one likes a cheater, even a single-celled one.

New research from Rice University shows how cooperative single-celled amoebae rely on family ties to keep cheaters from undermining the health of their colonies. The research appeared in the Proceedings of the National Academy of Sciences in May.

"It's very unusual to get a complete story in biology -- one that marries careful field work with painstaking work in the laboratory -- and that's what we have here," said research co-author Joan Strassmann, chair of Rice's Department of Ecology and Evolutionary Biology.

Rice's research involved the common soil microbe Dictyostelium discoideum. These amoebae can be loners in times of plenty, but when food is scarce they work together, forming colonies to ensure their survival. About one fifth of the individuals in a colony form a tall, thin stalk. The rest climb the stalk and clump together into a bulbous fruiting body that can be carried away to better environs by the wind or on the legs of passing insects.

This simple social system poses an evolutionary conundrum for biologists; the members of the stalk give themselves up altruistically to support the colony, so what's to keep more selfish strains of D. discoideum from cheating the system, avoiding the stalk and out-reproducing their altruistic neighbors"

Strassmann and Rice evolutionary biologist David Queller have previously investigated how Dictyostelium colonies control cheating. For example, a study on D. discoideum showed that one gene governing cooperative behavior was also tied to reproduction. In another study, mutants that were genetically predisposed to avoid altruistic service in the stalk were also excluded from reproducing. A third study demonstrated that Dictyostelium purpureum preferentially associated with its own kin -- another mechanism that ensures altruism isn't taken advantage of by cheaters.

The current study combined graduate student Owen Gilbert's careful field and lab work on natural D. discoideum clones with exacting studies of genetically engineered mutant strains conducted by former postdoctoral researcher Kevin Foster and postdoctoral researcher Natasha Mehdiabadi.

"This work required investigators skilled in both field biology and molecular biology, an all-too-rare combination," Strassmann said.

Gilbert collected 144 D. discoideum fruiting bodies -- some of which were the first ever reported in the wild -- from 2003 to 2005 at the University of Virginia's Mountain Lake Biological Station in the Appalachian Mountains of southwestern Virginia. Back in the lab, Gilbert broke open the fruiting bodies and deciphered the genetic makeup of more than 3,000 individual spores. Though he found genetic differences between fruiting bodies, the spores within particular fruiting bodies were highly related.

Foster and Mehdiabadi worked with a mutant form of D. discoideum called "cheater A" that was missing a single gene known to play roles in both group productivity and reproduction. On their own, cheater A mutants produced few or no spores, but in mixed colonies they could thrive by cheating and avoiding service in the stalk. Foster and Mehdiabadi found cheater A spread readily within low-related colonies, and exacted a high toll by reducing the colonies' ability to reproduce. In colonies with highly related cells, the cheater's individual advantages were outweighed by the overall health of the group, so the cheaters couldn't gain a foothold.

"The combination of these two studies confirms something that's been long predicted by kin selection theory -- a mutant that cheats when relatedness is low cannot and has not spread in the wild because of natural relatedness," Queller said.

Gilbert said, "Our results answer the big question of why altruism persists. It persists because high relatedness prevents the spread of socially destructive mutants."

Jade Boyd | EurekAlert!
Further information:
http://www.rice.edu

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>