Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Soil particles found to boost prion's capacity to infect

06.07.2007
The rogue proteins that cause chronic wasting disease (CWD) exhibit a dramatic increase in their infectious nature when bound to common soil particles, according to a new study.

Writing in the journal Public Library of Science (PLoS) Pathogens, a group led by University of Wisconsin-Madison prion expert Judd Aiken reports that prions, the protein agents of a family of fatal brain disorders, bind tightly to a common soil mineral and significantly increase the oral transmissibility of the agent.

The finding is important because it may help explain how chronic wasting disease and scrapie persist in the environment and spread efficiently in animal populations.

"We found a huge difference between infectious agent alone and infectious agent bound to these soil particles," says Aiken, the senior author of the new study and a professor of comparative biosciences in the UW-Madison School of Veterinary Medicine. "We observed an almost 700-fold difference" in the rate of infection.

Prions are an abnormal form of a protein produced normally by the body. Tough as nails, they can persist in the environment for long periods of time and retain their infectious capabilities. It is believed that prions may persist in the soil around the carcasses of dead animals and other locations where infected animals shed the protein in body fluids.

"These disease agents can stay out there for years and stay infectious," Aiken explains.

And herbivores such as deer and sheep, which are susceptible to prion infection, tend to consume a fair amount of dirt daily as they graze and forage. They are also known to consume soil as a source of minerals. Mineral licks are frequented by many animals, raising the prospect that the agents may become concentrated in the soil.

Relatively little is known about the routes of prion transmission in animals, but the new Wisconsin study may help to resolve one puzzle: Oral transmission of prions, says Aiken, tends not to be very efficient.

"This is a dichotomy in our field, and maybe (the new research) is part of the answer."

In their studies, the Wisconsin researchers looked at the ability of prions to bind to different types of common soil minerals. One, known as montmorillonite, is a type of clay and prions seem to have a special affinity for latching onto the microscopic particles.

"We expected the binding of the montmorillonite to be the highest among the minerals we examined. However, we were surprised by the strength of the binding," notes Joel Pedersen, a UW-Madison professor of soil science who helped direct the new study.

The Wisconsin team also looked at the ability of the prion to bind to two other common soil minerals: quartz and kaolinite, another common clay mineral.

"We found binding of the abnormal protein to all three," says Aiken, "but the binding to montmorillonite was very avid, very tight. We found it very difficult to remove the prions from the montmorillonite."

Feeding the prion-mineral mix to hamsters, a common animal model for prion disease, Aiken's team expected to see a lower rate of infection than animals dosed with pure agent. Surprisingly, prions bound to montmorillonite were significantly more infectious than prions alone.

"We thought the binding might decrease infectivity," Aiken explains. "In each case, you add montmorillonite and we get more animals sicker and quicker than in the absence of montmorillonite clay."

What is occurring in soils in the woods and on the farm is unknown, says Pedersen, but the new findings may help begin to answer some key questions about how prions survive in the soil and retain their infectious nature, sometimes for years.

In the case of scrapie, the prion disease of sheep, observations of sheep pastures in the United Kingdom and Iceland have shown that animals introduced into pastures that once held infected animals could become infected. Infectivity of prions was also enhanced when they were bound to whole soil.

"Since the 1940s it's been known that 'infected pastures' have the ability to infect new animals," according to Aiken.

Pedersen notes that soils are a complex mixture of organic and inorganic components that vary across the landscape and that scientists are just beginning to tease out factors in soils that may contribute to transmissibility. The new study implies, he says, "that some soils may promote the transmission of the prion agent more readily than others."

Why that's the case is unknown, Pedersen explains, but the Wisconsin team is exploring several hypotheses: that the soil particles might somehow protect the prion from degradation in the digestive system, that prions bound to clay might change the route or degree of uptake of the agent, or that the mineral somehow alters the size of prion aggregates, which have been shown to be more infectious than prions alone.

Aiken emphasizes there's still much to learn about routes of prion transmission, and the role of soil is just beginning to be explored.

"Soil is a very complex medium and we don't know what the agent is binding to" in natural or agricultural settings, Aiken says. "We do know that soil is not the only way it transmits. Animal-to-animal transmission is important, too."

Judd Aiken | EurekAlert!
Further information:
http://www.wisc.edu

More articles from Studies and Analyses:

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>