Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Blood clotting protein may inhibit spinal cord regeneration

05.07.2007
Fibrinogen, a blood-clotting protein found in circulating blood, has been found to inhibit the growth of central nervous system neuronal cells, a process that is necessary for the regeneration of the spinal cord after traumatic injury. The findings by researchers at the University of California, San Diego (UCSD) School of Medicine, may explain why the human body is unable to repair itself after most spinal cord injuries.

The study, led by Katerina Akassoglou, Ph.D., assistant professor in UCSD’s Department of Pharmacology, is the first evidence that when blood leaks into the nervous system, the blood protein contributes to the neurons’ inability to repair themselves. The findings, which show the molecular link between vascular and neuronal damage during injury to the central nervous system, was published in the online issue of the Proceedings of the National Academy of Sciences on July 2.

The research team studied three types of spinal cord injuries in mice and rats which resulted in cellular and vascular damage, and leakage of fibrinogen from the blood vessels. Once injured, neurons cannot be repaired because of various inhibitors that are present in the brain and the spinal cord after damage, which results in a patient’s paralysis. The researchers were surprised at the massive deposits of fibrinogen found at the sites of injury. That discovery led them to investigate the protein’s effect on neuronal cells’ ability to regenerate.

“Our study shows that fibrinogen directly affects neurons by inhibiting their ability for repair,” said Akassoglou. Fibrinogen – contained in the blood which leaks at the site of injury – begins the process of inhibiting axonal growth by binding to the beta 3 integrin receptor. This binding, in turn, induces the activation of another receptor on the neuronal cells, called the epidermal growth factor receptor. When the second receptor is activated, it inhibits the axonal growth. Other inhibitors have been identified that use the same epidermal growth factor receptor, but this is the first blood-derived inhibitor that has been found.

The discovery may open the door to a possible strategy to improving recovery after spinal cord injury by discovering a way to block activation of neuronal receptors by fibrinogen. Identifying the specific inhibitors that impede the repair process could provide ways to regenerate and connect the damaged nerves and initiate recovery from paralysis after spinal cord injury.

“Inhibiting the damaging effects of fibrinogen on neurons may potentially facilitate repair in the nervous system after injury” said Akassoglou. A similar mechanism could be at work in other neurological diseases that result in paralysis, such as multiple sclerosis or hemorrhagic stroke, where blood vessels break and bleed into the brain. She added that such a therapeutic approach wouldn’t interfere with fibrinogen’s essential role in coagulation, because its blood-clotting mechanism depends on binding with a different receptor.

Debra Kain | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Studies and Analyses:

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

nachricht Urbanization to convert 300,000 km2 of prime croplands
27.12.2016 | Mercator Research Institute on Global Commons and Climate Change (MCC) gGmbH

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>