Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New University Of Leicester Study Offers Hope To Infertile Couples

29.06.2007
A new study from the University of Leicester is investigating whether a naturally produced hormone could provide the key to helping couples conceive.

It will for the first time allow researchers to see how important the hormone –relaxin- is for human pregnancy

As part of her doctoral studies, Abigail Thompson is exploring the role that the relaxin hormone has in achieving a successful pregnancy. If the study is successful it is hoped that use of this hormone may improve fertility rates and help infertile couples to conceive.

Details of the study were made public today (Friday June 29) at a Festival of Postgraduate Research at the University of Leicester.

Abigail, a Human Reproductive Biologist in the Department of Infection, Immunity and Inflammation, said: “Achieving a successful pregnancy is becoming ever more difficult for an increasing number of couples, young and old, with one in six couples experiencing difficulties conceiving.

“Implantation of the embryo into the uterus 6 or 7 days after fertilisation is essential to achieve pregnancy and its failure is a major cause of sterility, presenting a social and economic burden worldwide. Assisted reproductive technologies which can help to reduce levels of infertility are used by 27,000 couples a year in Britain alone. Despite this, the success rates remain low and the costs of fertility treatments stay high.”

Funded by EMBIC, the European Network of Excellence on Embryo Implantation Control, the research project aims to improve these success rates by determining factors which affect the implantation process.

The Leicester study is exploring the role of the hormone relaxin which is expressed during the first trimester of pregnancy in women.

Abigail said: “The role of this hormone in human pregnancy is poorly understood, however, it is known that in pig and rat pregnancy it plays an important role in widening of the birth canal and softening of the cervix during the third trimester, preparing these animals for labour.

“It is hypothesised that this hormone in humans may be involved in the implantation process of pregnancy, through softening of the uterine tissue at the site of implantation, allowing the embryo to obtain nutrients from the mother and for the placenta to eventually form.

“My research will involve using a model system to localise the relaxin hormone at the point of attachment and implantation of the embryo into the uterus, and to study its affects at this point.

“This work will for the first time allow us to see how important this hormone is for human pregnancy and could be a step towards improving fertility rates and infertility treatments worldwide, helping infertile couples to conceive.”

EMBIC is a European Union network of excellence on embryo implantation control, concentrating the research potential of 19 leading European institutions and 2 private companies in 11 countries for an improved understanding of infertility and its causes.

The research is being presented to the public at the University of Leicester on June 29. The Festival of Postgraduate Research introduces employers and the public to the next generation of innovators and cutting-edge researchers, and gives postgraduate researchers the opportunity to explain the real world implications of their research to a wide ranging audience.

More information on the Festival of Postgraduate Research at: http://www.le.ac.uk/gradschool/festival/

Ather Mirza | alfa
Further information:
http://www.le.ac.uk/gradschool/festival/

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>