Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Autism theory put to the test with new technology

28.06.2007
University of Calgary researcher hopes to advance understanding of autism by studying ancient human searching behavior

Next time you lose your car keys and enlist the family to help you search, try a little experiment. After your spouse searches an area, go and look in the same place. It will likely feel strange, even irritating to both of you - and that’s because you may be fighting an ancient, hard-wired, human behaviour pattern.

The behavioural phenomenon is called ‘inhibition of return’ and for our ancient hunter-gatherer ancestors it made a lot of sense. As Dr. Tim Welsh explains, “This behaviour likely developed through evolution to increase search efficiency. Returning to search an area that someone else has already searched doesn’t make a lot of sense from a survival point of view because they’ve either found the food and eaten it, or there’s no food there.”

Inhibition of return has been well-documented over the years, but Welsh is interested in measuring exactly how the actions of another individual affect our own, and whether people with autism react differently than the rest of the population. To test this Welsh, a professor in the Faculties of Kinesiology and Medicine, came up with a unique and elegant experiment that uses some cutting-edge technology.

In Welsh’s set-up, two subjects sit across from each other wearing, liquid crystal goggles. They are told to reach for a lighted target in front of them.

Welsh’s previous work has shown that if we see someone else touching an area, we are much slower to move there, but Welsh wanted to see how much of another person's actions we need to be aware of, to affect our own. Welsh’s crystal goggles become opaque allowing the subject to see only a fraction of the other person’s movement.

He discovered that as social beings, we are so sensitive to another’s actions that just the suggestion of a movement was enough to trigger the inhibition of return effect.

So what happens when the individual doesn’t really recognize, or can’t recognize the actions of another individual" Sadly this is often the case for people with autism, a complex neurological, developmental disability that affects over 50,000 Canadians. A current theory of autism is that individuals with the disorder have a problem with their mirror neuron system.

“In normal individuals if you see someone throwing a ball, your mind will ‘mirror’ those actions to make it seem as if you are throwing it yourself,” Welsh explains. “The theory is that a person with autism may not be able to mirror the actions of other individuals. So in our experimental set-up you would expect them to be unaffected by the actions of another person and this is exactly what we have found to this point.”

Welsh believes his research will advance our understanding of autism and the mirror neuron system - perhaps leading to more effective intervention and treatment of a condition that seems to be growing at an alarming rate. “What I think is very interesting,” says Welsh, “is that the same experimental set-up can effectively be used to test two theories, and in many ways the two groups we are working with – a typically-developing population and an autistic population – provide a control for the other group. I’m very excited about this research.”

Don McSwiney | EurekAlert!
Further information:
http://www.ucalgary.ca

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>