Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First study transplanting angina patients' purified stem cells shows safety and symptom relief

28.06.2007
Researcher first tests cell extraction technique on himself

The first U.S. study to transplant a potent form of purified adult stem cells into the heart muscle of patients with severe angina provided evidence that the procedure is safe and produced a reduction in angina pain as well as improved functioning in patients' daily lives, reports the lead researcher at Northwestern University's Feinberg School of Medicine.

Within three to six weeks after the severe angina patients were injected with their own stem cells, many who used to experience pain just from walking to the refrigerator, now only had pain when they climbed two flights of stairs.

This is the first human trial in which patients' own purified stem cells, called CD-34 cells, were injected into their hearts in an effort to spur regrowth of small blood vessels that constitute the microcirculation of the heart muscle. Researchers believe the loss of these blood vessels contributes to the pain of chronic, severe angina.

While lead researcher, Douglas Losordo, M.D., cautioned this was a small pilot study, he said the results are encouraging. "That's a very meaningful change in lifestyle or functional capacity," he noted.

Losordo is director of the Feinberg Cardiovascular Research Institute and the Eileen M. Foell Professor of Heart Research at the Feinberg School. He also is a cardiologist at Northwestern Memorial Hospital. He conducted the research while he was a professor of medicine at Tufts University School of Medicine.

The primary aim of the study was to test the safety of the technique, but researchers also discovered preliminary indications of the therapy's benefits. The new study is published June 26 in Circulation.

"Our goal is to reconstitute the microcirculation, get the blood back into the tissue and alleviate the symptoms," Losordo said.

Evidence in the lab shows the cell therapy appears to work in at least two ways: the CD-34 cells help to form new micro-blood vessels as well as encourage existing cells in the tissue to grow vessels, a process called neovascularization.

Out of the estimated 1 million people in the U.S. who suffer from chronic, severe angina -- chest pain due to blocked arteries -- about 300,000 cannot be helped by any traditional medical treatment such as angioplasty, bypass surgery or stents. This is called intractable angina, the severity of which is designated by classes. The patients in Losordo's study were class 3 or 4, meaning they had chest pain from normal to minimal activities such as brushing their teeth or even resting.

After the intractable angina patients were injected with their own stem cells, within three to six months many improved up to two classes in functional capability, a significant gain. The double-blind, randomized, placebo-controlled study included 24 patients ages 48 to 84.

Before Losordo launched the study with a procedure to extract stem cells from angina patients, he took the unusual step of testing the stem cell extraction procedure on himself. He took the drug patients were to take and underwent the stem cell extraction process.

"I wanted to know what the patients were going to experience," Losordo said. "I knew it was going to be harder for the patient because I don't have cardiovascular disease. But if it was tough for me, then there was no way I was going to subject the patients to it."

Rather than extract the stem cells from a patient's bone marrow, which is done in an operating room and can be a painful procedure, Losordo collected the cells from a patient's peripheral circulation. Participants first took a drug called G-CSF for five days, which stimulates the production and release of CD-34 cells from bone marrow. An intravenous line was then inserted into a patient's vein and his blood cells were processed through a machine (which resembles a dialysis machine) that removes mono-nuclear cells, a population of white blood cells that contains the CD-34s. He further processed the cells to select only CD-34s.

"These cells are very powerful repair cells for ischemic tissue. They are capable of forming new blood vessels," Losordo said.

Then Losordo injected the CD-34 cells into the heart muscle. He first targeted where to inject the stem cells through a sophisticated electromechanical mapping technology that was originally developed by the Israeli army as a missile-tracking device. It identifies where the heart muscle is alive but not functioning because it is not receiving enough blood supply. This state is called hibernating myocardium. Via the mapping technique, the hibernating muscle appears as red, while the healthy muscle is blue.

"It's the same way that bears hibernate because they want to decrease energy consumption," Losordo said. "Muscle hibernates because it wants to decrease energy consumption to stay alive. So, it doesn't contract. It's not getting enough oxygenated blood to perform normally, so it shuts down its contractile function."

Losordo has already launched a larger, national 20-center study that will enroll 150 participants to evaluate the promising therapy. He is also about to begin a similar study in heart failure patients using the same approach.

Marla Paul | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>