Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


First study transplanting angina patients' purified stem cells shows safety and symptom relief

Researcher first tests cell extraction technique on himself

The first U.S. study to transplant a potent form of purified adult stem cells into the heart muscle of patients with severe angina provided evidence that the procedure is safe and produced a reduction in angina pain as well as improved functioning in patients' daily lives, reports the lead researcher at Northwestern University's Feinberg School of Medicine.

Within three to six weeks after the severe angina patients were injected with their own stem cells, many who used to experience pain just from walking to the refrigerator, now only had pain when they climbed two flights of stairs.

This is the first human trial in which patients' own purified stem cells, called CD-34 cells, were injected into their hearts in an effort to spur regrowth of small blood vessels that constitute the microcirculation of the heart muscle. Researchers believe the loss of these blood vessels contributes to the pain of chronic, severe angina.

While lead researcher, Douglas Losordo, M.D., cautioned this was a small pilot study, he said the results are encouraging. "That's a very meaningful change in lifestyle or functional capacity," he noted.

Losordo is director of the Feinberg Cardiovascular Research Institute and the Eileen M. Foell Professor of Heart Research at the Feinberg School. He also is a cardiologist at Northwestern Memorial Hospital. He conducted the research while he was a professor of medicine at Tufts University School of Medicine.

The primary aim of the study was to test the safety of the technique, but researchers also discovered preliminary indications of the therapy's benefits. The new study is published June 26 in Circulation.

"Our goal is to reconstitute the microcirculation, get the blood back into the tissue and alleviate the symptoms," Losordo said.

Evidence in the lab shows the cell therapy appears to work in at least two ways: the CD-34 cells help to form new micro-blood vessels as well as encourage existing cells in the tissue to grow vessels, a process called neovascularization.

Out of the estimated 1 million people in the U.S. who suffer from chronic, severe angina -- chest pain due to blocked arteries -- about 300,000 cannot be helped by any traditional medical treatment such as angioplasty, bypass surgery or stents. This is called intractable angina, the severity of which is designated by classes. The patients in Losordo's study were class 3 or 4, meaning they had chest pain from normal to minimal activities such as brushing their teeth or even resting.

After the intractable angina patients were injected with their own stem cells, within three to six months many improved up to two classes in functional capability, a significant gain. The double-blind, randomized, placebo-controlled study included 24 patients ages 48 to 84.

Before Losordo launched the study with a procedure to extract stem cells from angina patients, he took the unusual step of testing the stem cell extraction procedure on himself. He took the drug patients were to take and underwent the stem cell extraction process.

"I wanted to know what the patients were going to experience," Losordo said. "I knew it was going to be harder for the patient because I don't have cardiovascular disease. But if it was tough for me, then there was no way I was going to subject the patients to it."

Rather than extract the stem cells from a patient's bone marrow, which is done in an operating room and can be a painful procedure, Losordo collected the cells from a patient's peripheral circulation. Participants first took a drug called G-CSF for five days, which stimulates the production and release of CD-34 cells from bone marrow. An intravenous line was then inserted into a patient's vein and his blood cells were processed through a machine (which resembles a dialysis machine) that removes mono-nuclear cells, a population of white blood cells that contains the CD-34s. He further processed the cells to select only CD-34s.

"These cells are very powerful repair cells for ischemic tissue. They are capable of forming new blood vessels," Losordo said.

Then Losordo injected the CD-34 cells into the heart muscle. He first targeted where to inject the stem cells through a sophisticated electromechanical mapping technology that was originally developed by the Israeli army as a missile-tracking device. It identifies where the heart muscle is alive but not functioning because it is not receiving enough blood supply. This state is called hibernating myocardium. Via the mapping technique, the hibernating muscle appears as red, while the healthy muscle is blue.

"It's the same way that bears hibernate because they want to decrease energy consumption," Losordo said. "Muscle hibernates because it wants to decrease energy consumption to stay alive. So, it doesn't contract. It's not getting enough oxygenated blood to perform normally, so it shuts down its contractile function."

Losordo has already launched a larger, national 20-center study that will enroll 150 participants to evaluate the promising therapy. He is also about to begin a similar study in heart failure patients using the same approach.

Marla Paul | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>