Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why do power couples migrate to metropolitan areas? Actually, they don't

28.06.2007
More than half of all “power couples” – couples in which both spouses are college graduates – live in large metropolitan areas (MSAs) with more than two million residents.

What causes the concentration of well-educated couples in big cities" A new study from the Journal of Labor Economics disputes prior research suggesting power couples migrate to large MSAs. Instead, the researchers argue that college-educated singles are more likely to move to big cities where they meet, date, marry, and divorce other college-educated people. In other words, power couples don’t move to big cities intact – they’re formed there. This finding has important implications for city planners hoping to attract a well-educated workforce.

In 1970, 39 percent of power couples lived in a metropolitan area of at least two million residents. By 1990 this number had grown substantially: Fifty percent of all power couples lived in a big city. In contrast, couples in which neither spouse has a college degree have the lowest probability of living in a large city and the lowest rate of increase, growing from 30 percent to 34 percent in the same twenty year period.

Using data from a large-scale statistical study of 4,800 families (Panel Study on Income Dynamics), Janice Compton (University of Manitoba) and Robert A. Pollak (Washington University and National Bureau of Economic Research) argue that couple migration patterns to large metropolitan areas are influenced gendered determinants – couples in which the man has a college degree are far more likely to move to a metropolitan area than couples in which only the woman has a college degree.

The researchers analyzed data from men aged 25-39 and women aged 23-37, including all married couples who live together and all unmarried heterosexual couples who have lived together for at least one year. They found that migration patterns for “part-power couples” in which the woman is a college graduate are statistically similar to couples in which neither partner is college educated.

“Part-power couples” with a better educated wife are also less likely to migrate from one large metropolitan area to another large metropolitan area, and are more likely to migrate from a large metropolitan area to a mid-size metropolitan area, the researchers found.

“We find that power couples are not more likely to migrate to the largest metropolitan areas and are no less likely than other couples to migrate from such areas once they are there,” write the researchers. “The observed trends in location patterns are primarily due to differences in the rates at which power couples form and dissolve in cities of various sizes rather than to the migration of power couples to the largest metropolitan areas.”

Indeed, even during the 1990s when the proportion of power couples living in metropolitan areas dropped, the percentage of college educated single men and college educated single women living in big cities increased modestly.

Suzanne Wu | EurekAlert!
Further information:
http://www.uchicago.edu

More articles from Studies and Analyses:

nachricht Amputees can learn to control a robotic arm with their minds
28.11.2017 | University of Chicago Medical Center

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>