Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Greenhouse gas burial

26.06.2007
Deep coal seams that are not commercially viable for coal production could be used for permanent underground storage of carbon dioxide (CO2) generated by human activities, thus avoiding atmospheric release, according to two studies published in Inderscience's International Journal of Environment and Pollution. An added benefit of storing CO2 in this way is that additional useful methane will be displaced from the coal beds.

Finding ways to store (sequester) the greenhouse gas CO2, indefinitely, is one approach being investigated in efforts to reduce atmospheric CO2 levels and so help combat climate change. CO2 might be pumped into oil wells to extract the last few drops of oil or be placed deep underground in brine aquifers or unmineable coal seams.

Researchers at the U.S. Department of Energy's National Energy Technology Laboratory have carried out initial investigations into the potential environmental impacts of CO2 sequestration in unmineable coal seams. The research team collected 2000 coal samples from 250 coal beds across 17 states. Some sources of coal harbor vast quantities of methane, or natural gas. Low-volatile rank coals, for instance, average the highest methane content, 13 cubic meters per tonne of coal.

The researchers found that the depth from which a coal sample is taken reflects the average methane content, with much deeper seams containing less methane. However, the study provides only a preliminary assessment of the possibilities. The key question is whether methane can be tapped from the unmineable coal seams and replaced permanently with huge quantities of carbon dioxide; if so, such coal seams could represent a vast sink for CO2 produced by industry. The researchers point out that worldwide, there are almost 3 trillions tonnes of storage capacity for CO2 in such deep coal seams.

To replicate actual geological conditions, NETL has built a Geological Sequestration Core Flow Laboratory (GSCFL). A wide variety of CO2 injection experiments in coal and other rock cores (e.g., sandstone) are being performed under in situ conditions of triaxial stress, pore pressure, and temperature. Preliminary results obtained from Pittsburgh No. 8 coal indicate that the permeability decreases (from micro-darcies to nano-darcies or extremely low flow properties) with increasing CO2 pressure, with an increase in strain associated with the triaxial confining pressures restricting the ability of the coal to swell. The already existing low pore volume of the coal is decreased, reducing the flow of CO2, measured as permeability. This is a potential problem that will have to be overcome if coal seam sequestration is to be widely used.

The research team has also investigated some of the possible side-effects of sequestering CO2 in coal mines. They tested a high volatility bituminous coal with produced water and gaseous carbon dioxide at 40 Celsius and 50 times atmospheric pressure. They used microscopes and X-ray diffraction to analyze the coal after the reaction was complete. They found that some toxic metals originally trapped in the coal were released by the process, contaminating the water used in the reaction.

"Changes in water chemistry and the potential for mobilizing toxic trace elements from coal beds are potentially important factors to be considered when evaluating deep, unmineable coal seams for CO2 sequestration, though it is also possible that, considering the depth of the injection, that such effects might be harmless" the researchers say. "The concentrations of beryllium, cadmium, mercury, and zinc increased significantly, though both beryllium and mercury remained below drinking water standards." However, toxic arsenic, molybdenum, lead, antimony, selenium, titanium, thallium, vanadium, and iodine were not detected in the water, although they were present in the original coal samples.

Otis Mills | EurekAlert!
Further information:
http://www.inderscience.com/

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>