Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gut check: Tracking the ecosystem within us

26.06.2007
HHMI study profiles microbes that colonize newborns' GI tracts

For more than 100 years, scientists have known that humans carry a rich ecosystem within their intestines. An astonishing number and variety of microbes, including as many as 400 species of bacteria, help humans digest food, mitigate disease, regulate fat storage, and even promote the formation of blood vessels. By applying sophisticated genetic analysis to samples of a year’s worth baby poop, Howard Hughes Medical Institute researchers have now developed a detailed picture of how these bacteria come and go in the intestinal tract during a child’s first year of life.

The study, published June 25, 2007, in the journal Public Library of Science (PLoS) Biology, was led by Howard Hughes Medical Institute (HHMI) investigator Patrick O. Brown at the Stanford University School of Medicine.

"I don't know what a human would look like without a colonized gut," said Chana Palmer, the lead author of the new study and a former graduate student in Brown's lab. "The microbiota are important. They help you extract more from your food; they're important for the immune system; and they help protect us from being colonized by [microbes] that are going to do us harm."

Before birth, the human intestinal tract is sterile, but babies immediately begin to acquire the microbial denizens of the gut from their environment -- the birth canal, mothers' breast, and even the touch of a sibling or parent. Within days, a thriving microbial community is established and by adulthood, the human body typically has as many as ten times more microbial cells than human cells. This is primarily due to the large number of microorganisms that have taken up residence in the intestine.

The new study tracked the evolution of the microbial ecosystems in 14 healthy, full-term human infants that were breast fed. Most of the bacteria that live within humans do not thrive in an oxygen-rich environment, and thus are difficult or impossible to grow in culture in the lab. So the researchers turned to DNA microarray technology. That technology, developed by Brown in the 1990s, allows researchers to simultaneously measure the presence or activity of thousands of genes. The team used microarrays to profile the mixture of bacterial DNA in an average of 26 stool samples per infant over the course of the first year of life, beginning with the first stool after birth.

For a handful of these samples, they compared the results that they had obtained using their microarray with the laborious ‘gold standard’ approach of using genetic libraries of bacteria to get a snapshot of the microbial ecosystem in an infant at a given point in time and found that their new method performed very well.

The results, said Palmer, were striking: the group found that the intestinal microbial communities varied widely from baby to baby – both in terms of which microbes were present and in how that composition changed over time. That finding, she said, is important because it helps broaden the definition of healthy microbial colonization in a baby.

Another intriguing observation, Palmer noted, was a tendency for sudden shifts in the composition of the infants' intestinal microbial communities over time as different species of bacteria ebbed and flowed.

"We don't have a good explanation for why one big group of bacteria would replace another. And it's not that the number of bacteria dropped," Palmer explained. "The size of the population was relatively stable."

Over time, however, the composition of the intestinal microbial communities converged toward a more generic profile characteristic of the adult intestine.

The new study, the authors noted, might bring some clarity to the factors that shape the composition of the microbial communities in the infant intestinal tract. For example, there are conflicting studies about Bifidobacteria, a group of bacterial species reputed to have beneficial effects. Some studies have shown that it is more common in the intestinal tracts of breast-fed infants, but Palmer and Brown’s work documented a paucity of those bacteria, although all were breast fed.

The finding that most babies in the study did not acquire significant numbers of Bifidobacteria until several months after birth was a surprise, Palmer said: "That's definitely a contentious area. A lot of studies say they are a major constituent of gut flora beginning shortly after birth."

Putting the study on a firmer footing was the fortuitous inclusion of a pair of fraternal twins, Palmer noted. Although the researchers observed variability within their study, the composition and dynamics of the evolving microbial ecosystems were strikingly similar in the twins. This, Palmer said, provided evidence that genetic and environmental factors shape those ecosystems in reproducible ways. "These data are so rich it is hard to benchmark," she explained. "It's nice to have that check with the twins."

An important general conclusion, said Palmer, is that by the end of the first year of life the intestinal microbial ecosystems assumed a generally similar profile.

"It almost doesn’t matter where you start off because we all end up in the same place. There are some bacteria that are really well suited for your gut and they're going to win no matter what."

Jennifer Michalowski | EurekAlert!
Further information:
http://www.hhmi.org

More articles from Studies and Analyses:

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

nachricht Urbanization to convert 300,000 km2 of prime croplands
27.12.2016 | Mercator Research Institute on Global Commons and Climate Change (MCC) gGmbH

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>