Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Salvage logging, replanting increased biscuit fire severity

12.06.2007
The Biscuit Fire of 2002 burned more severely in areas that had been salvage logged and replanted, compared to similar areas that were also burned in a 1987 fire but had been left to regenerate naturally, a new Oregon State University Study concludes.

The analysis, one of the first to ever quantify the effect of salvage logging and replanting on future fire severity, is being published this week in Proceedings of the National Academy of Sciences, a professional journal.

It found that fire severity was 16 to 61 percent higher in logged and planted areas, compared to those that had burned severely and were left alone in a fire 15 years earlier. The study was done in areas that had burned twice – once in the 1987 Silver Fire, and again in the massive 2002 Biscuit Fire, one of the largest forest fires in modern U.S. history.

“Many forest managers in the past have assumed that salvage logging after a severe forest fire, along with replanting new trees, will reduce future fire severity,” said Jonathan Thompson, a doctoral student at OSU in the Department of Forest Science, and lead author on the study. “This is based on the assumption that removing dead trees reduces fuel loads and planting conifers hastens the return of fire resistant forests.”

“However, those assumptions have never really been tested,” Thompson said. “This analysis showed that, after accounting for the effects of topography, Silver Fire severity and other environmental variables, the Biscuit Fire severity was higher where they had done salvage logging and planting.”

It’s not completely clear from these data, Thompson said, what the causative mechanism is – the tree removal, the addition of more fine fuels to the forest floor during the logging operation, or the growth of new trees that for several decades may be very vulnerable to new fires.

The study is not, researchers said, an indictment of salvage logging – it may still have value for economic purposes or to assure the establishment of desired tree species. However, “the hypothesis that salvage-logging, then planting, reduces re-burn severity is not supported by these data,” the scientists said in their report.

“Young forests in this region are susceptible to recurring severe fires,” Thompson said. “Compared to an older forest with branches high above the forest floor, young trees are very vulnerable, whether they are planted or naturally regenerated.”

However, in the aftermath of a wildfire, removal of large dead trees followed by planting conifer seedlings does not appear to lessen the risk of severe fires in the first 10-20 years, Thompson said. This may be because the logging process leaves more available fuel on the forest floor; the dense, homogenous replantation of young trees provides a good setting for fire; or some combination of these factors over time. “Dead woody fuel . . . is only part of the fire risk story, and it may not be the most important after a few years,” the study noted.

By contrast, natural regeneration of forests, he said, appears to result in at least slightly, and sometimes significantly less risk of severe future fires. This could be because the regenerating trees are more patchy, have open gaps, more species diversity, or other factors. But the study showed that total consumption of tree crowns in a recurring fire situation is more severe in the managed stands than the natural ones, at least when there are one to two decades between fires.

This research was done with satellite data, government agency records and aerial photography, in the mixed-conifer, mixed-evergreen hardwood zones of the Siskiyou Mountains. It analyzed burn severity patterns with a commonly used metric of fire damage on almost 45,000 acres of the Biscuit Fire that had also burned 15 years earlier.

Among its conclusions:

- Areas that burned severely in 1987 tended to re-burn at high severity in 2002.

- Areas unaffected by the initial fire tended to burn at the lowest severities in 2002.

- The findings are consistent with studies that show site history influences fire severity, and that conifer plantations are associated with high severity fire.

There are some potential environmental and management implications of the research, Thompson said.

“If we do have a warmer climate that leads to increasing frequencies of wildfire in this region,” he said, “a positive feedback of high severity re-burns may favor plant species more able to deal with that regime – manzanita, ceanothus or tan oak – that could displace conifer forests.”

Managers may have few options to reduce the risk of future high severity fire within areas that have experienced recent severe burns.

Typical fuel treatments such as thinning do not have much effect on fire risk in young forests, Thompson said. There are ongoing experiments within the Biscuit Fire region to test the effectiveness of fuel breaks for slowing the spread of severe fires.

Jonathan Thompson | EurekAlert!
Further information:
http://www.oregonstate.edu

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>