Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Competition, loss of selfishness mark shift to supersociety

11.06.2007
How social or altruistic behavior evolved has been a central and hotly debated question, particularly by those researchers engaged in the study of social insect societies – ants, bees and wasps. In these groups, this question of what drives altruism also becomes critical to further understanding of how ancestral or primitive social organizations (with hierarchies and dominance fights, and poorly developed division of labor) evolve to become the more highly sophisticated networks found in some eusocial insect collectives termed “superorganisms.”

In a paper published online May 21 before print by the Proceedings of the National Academy of Sciences (PNAS), a pair of researchers from Cornell University and Arizona State University propose a model, based on tug-of-war theory, that may explain the selection pressures that mark the evolutionary transition from primitive society to superorganism and which may bring some order to the conflicted thinking about the roles of individual, kin, and group selection that underlie the formation of such advanced eusocial groups.

A superorganism ultimately emerges as a result of intergroup competition according to findings by theoretician H. Kern Reeve of Cornell University’s Department of Neurobiology and Behavior and professor Bert Hölldobler of Arizona State University’s School of Life Sciences and Center for Social Dynamics and Complexity.

Reeve and Hölldobler’s model is unique in that it is comprised of two interlocked nested tug-of-war theories. The first piece describes the tug of war over resource shares within a group or colony (intragroup competition), and the second piece incorporates the effects of a tug-of-war between competing colonies (intergroup competition).

According to Hölldobler, the path to colonial supergiant is first paved by the maximization of the inclusive fitness of each individual of the society. How this might arise, he believes, is that competition that might exist between individuals in the same society diminishes as the incipient colonial society becomes larger, better organized and contains better division of labor and ultimately, cohesiveness.

“Such societies in turn produce more reproductive offspring each year than neighboring societies that are less organized. Thus, genes or alleles that code for such behaviors will be propagated faster,” Hölldobler says.

The second piece of the model takes into account that “as the colonial organization of one group rises, there is a coincident rise in discrimination against members of other societies of the same species.” Hölldobler notes that the competition between societies soon becomes a major force reinforcing the evolutionary process: “In this way the society or insect colony becomes the extended phenotype of the collective genome of the society.”

Hölldobler believes that this model developed with Reeve goes further than others in explaining the evolutionary transition from hierarchical organizations to superorganism, “as it also demonstrates how the target of selection shifts from the individual and kin to group selection.”

Such a nested tug-of-war model, he says, might also be applied “equally well to the analysis of the evolution of other animal societies” and give insight into the evolution of cooperation in non-human and human primates, in addition to such things as collectives of cells and the formation of bacterial films.

Hölldobler is the Pulitzer Prize winning author (1991, non-fiction) of “The Ants,” co-authored with Edward O. Wilson, Harvard Professor Emeritus. Hölldobler’s research on the evolution of social organizations for this tiny, formidable insect has taken him around the world, led to the authorship of more than 300 articles and has garnered many international awards, including the Treviranus Medal, U.S. Senior Scientist Prize and Werner Heisenberg-Medal of the Alexander von Humboldt Foundation, and the Gottfried Wilhelm Leibniz Prize, some of the most prestigious science prizes given in Europe. He has been elected to the National Academy of Sciences, the American Academy of Arts and Sciences, the American Philosophical Society, and the former Alexander Agassiz Professor of Zoology of Harvard University, and Professor Emeritus, University of Würzburg, Germany. In addition to being a professor in the School of Life Sciences and the Center for Social Dynamics and Complexity in the College of Liberal Arts and Sciences at ASU, he is also Cornell University’s Andrew D. White Professor at Large.

Margaret Coulombe, margaret.coulombe@asu.edu
(480) 727-8934

Margaret Coulombe | EurekAlert!
Further information:
http://www.asu.edu

More articles from Studies and Analyses:

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>