Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Competition, loss of selfishness mark shift to supersociety

11.06.2007
How social or altruistic behavior evolved has been a central and hotly debated question, particularly by those researchers engaged in the study of social insect societies – ants, bees and wasps. In these groups, this question of what drives altruism also becomes critical to further understanding of how ancestral or primitive social organizations (with hierarchies and dominance fights, and poorly developed division of labor) evolve to become the more highly sophisticated networks found in some eusocial insect collectives termed “superorganisms.”

In a paper published online May 21 before print by the Proceedings of the National Academy of Sciences (PNAS), a pair of researchers from Cornell University and Arizona State University propose a model, based on tug-of-war theory, that may explain the selection pressures that mark the evolutionary transition from primitive society to superorganism and which may bring some order to the conflicted thinking about the roles of individual, kin, and group selection that underlie the formation of such advanced eusocial groups.

A superorganism ultimately emerges as a result of intergroup competition according to findings by theoretician H. Kern Reeve of Cornell University’s Department of Neurobiology and Behavior and professor Bert Hölldobler of Arizona State University’s School of Life Sciences and Center for Social Dynamics and Complexity.

Reeve and Hölldobler’s model is unique in that it is comprised of two interlocked nested tug-of-war theories. The first piece describes the tug of war over resource shares within a group or colony (intragroup competition), and the second piece incorporates the effects of a tug-of-war between competing colonies (intergroup competition).

According to Hölldobler, the path to colonial supergiant is first paved by the maximization of the inclusive fitness of each individual of the society. How this might arise, he believes, is that competition that might exist between individuals in the same society diminishes as the incipient colonial society becomes larger, better organized and contains better division of labor and ultimately, cohesiveness.

“Such societies in turn produce more reproductive offspring each year than neighboring societies that are less organized. Thus, genes or alleles that code for such behaviors will be propagated faster,” Hölldobler says.

The second piece of the model takes into account that “as the colonial organization of one group rises, there is a coincident rise in discrimination against members of other societies of the same species.” Hölldobler notes that the competition between societies soon becomes a major force reinforcing the evolutionary process: “In this way the society or insect colony becomes the extended phenotype of the collective genome of the society.”

Hölldobler believes that this model developed with Reeve goes further than others in explaining the evolutionary transition from hierarchical organizations to superorganism, “as it also demonstrates how the target of selection shifts from the individual and kin to group selection.”

Such a nested tug-of-war model, he says, might also be applied “equally well to the analysis of the evolution of other animal societies” and give insight into the evolution of cooperation in non-human and human primates, in addition to such things as collectives of cells and the formation of bacterial films.

Hölldobler is the Pulitzer Prize winning author (1991, non-fiction) of “The Ants,” co-authored with Edward O. Wilson, Harvard Professor Emeritus. Hölldobler’s research on the evolution of social organizations for this tiny, formidable insect has taken him around the world, led to the authorship of more than 300 articles and has garnered many international awards, including the Treviranus Medal, U.S. Senior Scientist Prize and Werner Heisenberg-Medal of the Alexander von Humboldt Foundation, and the Gottfried Wilhelm Leibniz Prize, some of the most prestigious science prizes given in Europe. He has been elected to the National Academy of Sciences, the American Academy of Arts and Sciences, the American Philosophical Society, and the former Alexander Agassiz Professor of Zoology of Harvard University, and Professor Emeritus, University of Würzburg, Germany. In addition to being a professor in the School of Life Sciences and the Center for Social Dynamics and Complexity in the College of Liberal Arts and Sciences at ASU, he is also Cornell University’s Andrew D. White Professor at Large.

Margaret Coulombe, margaret.coulombe@asu.edu
(480) 727-8934

Margaret Coulombe | EurekAlert!
Further information:
http://www.asu.edu

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>