Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U-M study finds lymphoma drug effective over long term

05.06.2007
86 percent of patients treated with Bexxar survived after 8 years of follow-up

Eight years after being treated with a new drug for non-Hodgkin's lymphoma, 86 percent of patients were still alive and half had not had a relapse of their disease, according to researchers from the University of Michigan Comprehensive Cancer Center.

The patients had follicular lymphoma, a type of cancer that is not considered to be curable using traditional treatments. Even if patients initially respond to treatment, the disease almost always comes back and becomes more difficult to treat.

The study followed 76 patients with follicular non-Hodgkin's lymphoma, a cancer of the lymph system, who received the radioimmunotherapy drug Bexxar as their first treatment for the disease. Ninety-five percent of the patients saw their tumors shrink from the treatment and three-quarters of patients went into complete remission. Patients were followed for a median of eight years, and nearly two-thirds have remained in complete remission eight years after treatment.

"For years we have known radioimmunotherapy such as Bexxar is one of the most effective treatments for patients with relapsed follicular lymphoma. These data show Bexxar is particularly effective when used as a frontline treatment," says Mark Kaminski, M.D., professor of internal medicine at the U-M Medical School. Kaminski will present these results June 4 at the American Society of Clinical Oncology annual meeting in Chicago.

"These results compare quite favorably with those achieved with state-of-the-art chemotherapy regimens that take months to deliver. But Bexxar is given as a single treatment, completed within one week, which makes it an extremely convenient regimen for patients," Kaminski says.

Non-Hodgkin's lymphoma, the nation's sixth leading cause of cancer death, is a cancer of the lymph system, which is part of the immune system. Follicular lymphoma is the second most common type of non-Hodgkin's lymphoma. Lymphoma spreads easily through the lymph system and the bloodstream and consequently tends to be widespread when it is diagnosed. Traditional treatment often involves intensive chemotherapy, or a combination of chemotherapy and the monoclonal antibody rituximab. These treatments are usually given every three weeks over a span of up to six months and can cause many unpleasant side effects, including nausea, hair loss and infections.

Bexxar, whose chemical name is tositumomab and iodine I 131 tositumomab, combines an antibody that seeks out cancer cells, and a radioactive form of the element iodine. When injected, it travels like a guided missile through the bloodstream to bind to a protein found on the surface of the cancerous cells. The radiation zaps these malignant cells with minimal exposure to normal tissues.

With the Bexxar therapeutic regimen, a patient receives an injected test dose of radioactive Bexxar, followed one to two weeks later with a custom-tailored therapeutic dose. After that, the therapy is considered complete. The most common side effect is a temporary lowering of blood counts several weeks after the treatment. There is no hair loss and nausea is rare.

Kaminski and his colleague Richard Wahl (formerly at U-M and now at Johns Hopkins University) developed the Bexxar regimen, which received approval from the U.S. Food and Drug Administration in June 2003 to treat follicular non-Hodgkin's lymphoma after other treatments have failed. The current results involve Bexxar as a first-line treatment for this disease.

Nicole Fawcett | EurekAlert!
Further information:
http://www.umich.edu
http://www.bexxar.com

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>