Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover inherited mutation for leukemia

01.06.2007
Researchers have discovered the first inherited gene mutation that increases a person's risk for chronic lymphocytic leukemia (CLL), one of the most common forms of the disease.

The study shows that the inherited mutation greatly reduces the gene's protective activity. Furthermore, a second kind of change occurs later that turns the gene off altogether, leading to leukemia. This latter alteration is a chemical change that is not inherited.

The findings could help identify people at risk for chronic leukemia, but they also may provide new insights into the process of natural cell death. They may even lead to new strategies for treating the disease.

The research is to be published in the June 1 issue of the journal Cell. It was led by researchers at the Ohio State University Comprehensive Cancer Center.

The mutation was found in a gene called DAPK1, which normally helps trigger the death of cells before they become cancerous. Researchers identified the mutation by testing a family in which the father, four sons, a grandson and a distant female relative developed this form of leukemia.

The chemical change is called DNA methylation. Healthy cells use this process to silence unneeded genes. But abnormal DNA methylation can turn off genes that control cell growth, and that lead to tumor growth.

"Our findings identify for the first time a gene that appears to be associated with hereditary CLL," says coauthor John C. Byrd, professor of internal medicine and a CLL specialist.

"They also show the importance of the gene in the pathogenesis of CLL, and direct us to target this gene with therapies that might re-activate it."

The findings also provide evidence that some genes might contribute to cancer even when they are not silenced entirely.

"This inherited change is remarkably subtle," says co-principal investigator Albert de la Chapelle, professor of molecular virology, immunology and medical genetics and a researcher with the Ohio State human cancer genetics program. "It does not shut down the gene, but just lowers its expression somewhat.

"Recently, many cancer geneticists have come to believe that such subtle changes are common causes of cancer, and this is one of the first, strong examples of that principle."

The study succeeded because it combined the field of gene mutation research and the new field of epigenetics, which identifies genes silenced by faulty DNA methylation, says Christoph Plass, professor of molecular virology, immunology and medical genetics and of veterinary biosciences, and also co-principal investigator on the study.

"Our findings show that it's important to look for both genetic and epigenetic alterations when identifying problem genes," he says.

CLL is the most common form of adult leukemia, with 15,300 new cases and 4,500 deaths from the disease expected this year in the United States. The leukemia is slightly more common in men than women, and typically strikes people who are in their 50s, 60s and 70s.

About 90 percent of CLL cases are sporadic; that is, they have no genetic component.

But about one in 10 people with CLL have relatives who also develop the disease – strong evidence of a hereditary predisposition. However, usually only two or three people within a family are affected, making it difficult to do the genetic studies needed to find possible mutations, Plass says.

The family examined in this research was identified by collaborator Henry Lynch at Creighton University.

The researchers are now studying the chemical pathway that regulates the gene, considering possible therapies, working to identify other CLL families and looking for other predisposing genes.

In 2005, other Ohio State Comprehensive Cancer Center researchers discovered a germline mutation in a gene for a microRNA that is implicated in CLL, suggesting that this may also be a predisposing mutation for the disease.

Darrell E. Ward | EurekAlert!
Further information:
http://www.osumc.edu

More articles from Studies and Analyses:

nachricht Do microplastics harbour additional risks by colonization with harmful bacteria?
05.04.2018 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>