Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

WFU study finds that moths mimic sounds to survive

01.06.2007
In a night sky filled with hungry bats, good-tasting moths increase their chances of survival by mimicking the sounds of their bad-tasting cousins, according to a new Wake Forest University study.

To be published in the May 29 issue of the Proceedings of the National Academy of Sciences, the study is the first to definitively show how an animal species uses acoustic mimicry as a defensive strategy.

The research was conducted by Jesse Barber, a doctoral student in biology at Wake Forest. William E. Conner, professor of biology at Wake Forest, co-authored the study.

In response to the sonar that bats use to locate prey, the tiger moths make ultrasonic clicks of their own. They broadcast the clicks from a paired set of structures called “tymbals.” Many species of tiger moth use the tymbals to make specific sounds that warn the bat of their bad taste. Other species make sounds that closely mimic those high-frequency sounds.

“We found that the bats do not eat the good-tasting moths that make the similar sounds,” said Barber, who has worked on this research for four years.

In the study, other types of moths that were similar in size to the sound-emitting moths, but did not make sounds, were gobbled up by the bats.

The researcher trained free-flying bats to hunt moths in view of two high-speed infrared video cameras to record predator-prey interactions that occur in fractions of a second. He also recorded the sounds emitted from each moth, as well as the sounds made by the bats.

All the bats quickly learned to avoid the noxious moths first offered to them, associating the warning sounds with bad taste. They then avoided a second sound-producing species even though it was not chemically protected. This is similar to the way birds avoid butterflies that look like the bad-tasting Monarch.

The two species of bats used were big brown bats and red bats. Barber raised the bats in the lab so behavior learned in the wild would not influence the results of the experiment.

Barber said anecdotal observations have suggested that animals such as snakes, owls and bees use acoustic mimicry. This study takes the next step and provides the definitive experimental evidence for how mimicking sounds helps an animal survive.

Cheryl Walker | EurekAlert!
Further information:
http://www.wfu.edu

More articles from Studies and Analyses:

nachricht Amputees can learn to control a robotic arm with their minds
28.11.2017 | University of Chicago Medical Center

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>