Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Arithmetic is child’s play

01.06.2007
Children are able to solve approximate addition or subtraction problems involving large numbers even before they have been taught arithmetic, according to a study conducted by researchers from The University of Nottingham and Harvard University.

The study, published in the journal Nature and undertaken at Harvard University, suggests that children do not need to master either the logic of place value or the addition table in order to perform approximate addition and subtraction.

Children’s difficulty with learning school arithmetic may stem from the need to produce an exact number when solving problems. Elementary education in mathematics might be improved — and children’s interest in the subject enhanced — if children’s talent for approximate calculation could be built upon in the classroom, the authors suggest.

Researchers presented five-year-old children with a series of illustrated problems, in the form of scenarios that involved the approximate addition and subtraction of symbolic numbers between five and 98. A subtraction question, for example, stated: “Sarah has 64 sweets and gives 13 of them away, and John has 34 sweets. Who has more?”

Even though the children had not yet been taught about symbolic arithmetic, and were yet to master the mechanics of symbolic addition and subtraction, they performed well above chance on the tests and without resorting to guessing. The children's inability to provide an exact solution to the problems showed that their approximate performance was not dependent on precise knowledge of the numbers.

The authors — lead researcher Dr Camilla Gilmore, now at the University of Nottingham, with Professor Elizabeth Spelke, the Marshall L. Berkman Professor of Psychology and Shannon McCarthy, a research assistant in the department of psychology, both in the department of psychology at Harvard — found evidence for these abilities in children from a broad range of backgrounds, when studies were conducted in both a quiet ‘laboratory’ setting and in the classroom.

The study also assessed whether children used their non-symbolic number sense in order to perform the approximate addition and subtraction. Adults, children and even infants are sensitive to number in arrays of dots and sequences of sounds.

These number representations display characteristic limitations: arrays of dots can be numerically compared, added, or subtracted only approximately, subtraction is less precise than addition, and numerical comparison becomes more difficult when the ratio of the two numbers involved in the problem approaches one. The children involved in the study displayed these same characteristics with regard to the symbolic addition and subtraction problems.

The authors suggest their findings may be useful for the teaching of elementary mathematics.

Dr Gilmore, who is a research fellow based in The University of Nottingham's Learning Sciences Research Institute (LSRI), said: "Exact symbolic arithmetic takes years to learn and poses difficulties for many children.

“For this reason, teachers were concerned that our problems would frustrate the children, and they were amazed at the children's success and engagement. Our findings suggest new possible strategies for teaching primary mathematics and making it fun."

Professor Spelke said: “We’ve known for some time that adults, children, and even infants and non-human animals have a sense of number. We were surprised to see, however, that children spontaneously use their number sense when they’re presented with problems in symbolic arithmetic.

“These children haven’t begun to be taught place value or exact addition facts. Nevertheless, their natural sense of number gives them a way to think about arithmetic.”

The full paper will be published online on May 30, at www.nature.com/nature. The study was funded by a grant from the National Science Foundation.

Emma Thorne | alfa
Further information:
http://www.nottingham.ac.uk

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Vanishing capillaries

23.03.2017 | Health and Medicine

Nanomagnetism in X-ray Light

23.03.2017 | Physics and Astronomy

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>