Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Arithmetic is child’s play

01.06.2007
Children are able to solve approximate addition or subtraction problems involving large numbers even before they have been taught arithmetic, according to a study conducted by researchers from The University of Nottingham and Harvard University.

The study, published in the journal Nature and undertaken at Harvard University, suggests that children do not need to master either the logic of place value or the addition table in order to perform approximate addition and subtraction.

Children’s difficulty with learning school arithmetic may stem from the need to produce an exact number when solving problems. Elementary education in mathematics might be improved — and children’s interest in the subject enhanced — if children’s talent for approximate calculation could be built upon in the classroom, the authors suggest.

Researchers presented five-year-old children with a series of illustrated problems, in the form of scenarios that involved the approximate addition and subtraction of symbolic numbers between five and 98. A subtraction question, for example, stated: “Sarah has 64 sweets and gives 13 of them away, and John has 34 sweets. Who has more?”

Even though the children had not yet been taught about symbolic arithmetic, and were yet to master the mechanics of symbolic addition and subtraction, they performed well above chance on the tests and without resorting to guessing. The children's inability to provide an exact solution to the problems showed that their approximate performance was not dependent on precise knowledge of the numbers.

The authors — lead researcher Dr Camilla Gilmore, now at the University of Nottingham, with Professor Elizabeth Spelke, the Marshall L. Berkman Professor of Psychology and Shannon McCarthy, a research assistant in the department of psychology, both in the department of psychology at Harvard — found evidence for these abilities in children from a broad range of backgrounds, when studies were conducted in both a quiet ‘laboratory’ setting and in the classroom.

The study also assessed whether children used their non-symbolic number sense in order to perform the approximate addition and subtraction. Adults, children and even infants are sensitive to number in arrays of dots and sequences of sounds.

These number representations display characteristic limitations: arrays of dots can be numerically compared, added, or subtracted only approximately, subtraction is less precise than addition, and numerical comparison becomes more difficult when the ratio of the two numbers involved in the problem approaches one. The children involved in the study displayed these same characteristics with regard to the symbolic addition and subtraction problems.

The authors suggest their findings may be useful for the teaching of elementary mathematics.

Dr Gilmore, who is a research fellow based in The University of Nottingham's Learning Sciences Research Institute (LSRI), said: "Exact symbolic arithmetic takes years to learn and poses difficulties for many children.

“For this reason, teachers were concerned that our problems would frustrate the children, and they were amazed at the children's success and engagement. Our findings suggest new possible strategies for teaching primary mathematics and making it fun."

Professor Spelke said: “We’ve known for some time that adults, children, and even infants and non-human animals have a sense of number. We were surprised to see, however, that children spontaneously use their number sense when they’re presented with problems in symbolic arithmetic.

“These children haven’t begun to be taught place value or exact addition facts. Nevertheless, their natural sense of number gives them a way to think about arithmetic.”

The full paper will be published online on May 30, at www.nature.com/nature. The study was funded by a grant from the National Science Foundation.

Emma Thorne | alfa
Further information:
http://www.nottingham.ac.uk

More articles from Studies and Analyses:

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>