Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Arithmetic is child’s play

01.06.2007
Children are able to solve approximate addition or subtraction problems involving large numbers even before they have been taught arithmetic, according to a study conducted by researchers from The University of Nottingham and Harvard University.

The study, published in the journal Nature and undertaken at Harvard University, suggests that children do not need to master either the logic of place value or the addition table in order to perform approximate addition and subtraction.

Children’s difficulty with learning school arithmetic may stem from the need to produce an exact number when solving problems. Elementary education in mathematics might be improved — and children’s interest in the subject enhanced — if children’s talent for approximate calculation could be built upon in the classroom, the authors suggest.

Researchers presented five-year-old children with a series of illustrated problems, in the form of scenarios that involved the approximate addition and subtraction of symbolic numbers between five and 98. A subtraction question, for example, stated: “Sarah has 64 sweets and gives 13 of them away, and John has 34 sweets. Who has more?”

Even though the children had not yet been taught about symbolic arithmetic, and were yet to master the mechanics of symbolic addition and subtraction, they performed well above chance on the tests and without resorting to guessing. The children's inability to provide an exact solution to the problems showed that their approximate performance was not dependent on precise knowledge of the numbers.

The authors — lead researcher Dr Camilla Gilmore, now at the University of Nottingham, with Professor Elizabeth Spelke, the Marshall L. Berkman Professor of Psychology and Shannon McCarthy, a research assistant in the department of psychology, both in the department of psychology at Harvard — found evidence for these abilities in children from a broad range of backgrounds, when studies were conducted in both a quiet ‘laboratory’ setting and in the classroom.

The study also assessed whether children used their non-symbolic number sense in order to perform the approximate addition and subtraction. Adults, children and even infants are sensitive to number in arrays of dots and sequences of sounds.

These number representations display characteristic limitations: arrays of dots can be numerically compared, added, or subtracted only approximately, subtraction is less precise than addition, and numerical comparison becomes more difficult when the ratio of the two numbers involved in the problem approaches one. The children involved in the study displayed these same characteristics with regard to the symbolic addition and subtraction problems.

The authors suggest their findings may be useful for the teaching of elementary mathematics.

Dr Gilmore, who is a research fellow based in The University of Nottingham's Learning Sciences Research Institute (LSRI), said: "Exact symbolic arithmetic takes years to learn and poses difficulties for many children.

“For this reason, teachers were concerned that our problems would frustrate the children, and they were amazed at the children's success and engagement. Our findings suggest new possible strategies for teaching primary mathematics and making it fun."

Professor Spelke said: “We’ve known for some time that adults, children, and even infants and non-human animals have a sense of number. We were surprised to see, however, that children spontaneously use their number sense when they’re presented with problems in symbolic arithmetic.

“These children haven’t begun to be taught place value or exact addition facts. Nevertheless, their natural sense of number gives them a way to think about arithmetic.”

The full paper will be published online on May 30, at www.nature.com/nature. The study was funded by a grant from the National Science Foundation.

Emma Thorne | alfa
Further information:
http://www.nottingham.ac.uk

More articles from Studies and Analyses:

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Disarray in the brain
18.12.2017 | Universität zu Lübeck

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Thanks for the memory: NIST takes a deep look at memristors

22.01.2018 | Materials Sciences

Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments

22.01.2018 | Earth Sciences

Saarland University bioinformaticians compute gene sequences inherited from each parent

22.01.2018 | Life Sciences

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>