Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Einstein researchers' discover 'radiation-eating' fungi

23.05.2007
Finding could trigger recalculation of Earth's energy balance and help feed astronauts

Scientists have long assumed that fungi exist mainly to decompose matter into chemicals that other organisms can then use. But researchers at the Albert Einstein College of Medicine of Yeshiva University have found evidence that fungi possess a previously undiscovered talent with profound implications: the ability to use radioactivity as an energy source for making food and spurring their growth.

"The fungal kingdom comprises more species than any other plant or animal kingdom, so finding that they're making food in addition to breaking it down means that Earth's energetics—in particular, the amount of radiation energy being converted to biological energy—may need to be recalculated," says Dr. Arturo Casadevall, chair of microbiology & immunology at Einstein and senior author of the study, published May 23 in PLoS ONE.

The ability of fungi to live off radiation could also prove useful to people: "Since ionizing radiation is prevalent in outer space, astronauts might be able to rely on fungi as an inexhaustible food source on long missions or for colonizing other planets," says Dr. Ekaterina Dadachova, associate professor of nuclear medicine and microbiology & immunology at Einstein and lead author of the study.

Those fungi able to "eat" radiation must possess melanin, the pigment found in many if not most fungal species. But up until now, melanin's biological role in fungi—if any--has been a mystery.

"Just as the pigment chlorophyll converts sunlight into chemical energy that allows green plants to live and grow, our research suggests that melanin can use a different portion of the electromagnetic spectrum—ionizing radiation—to benefit the fungi containing it," says Dr. Dadachova.

The research began five years ago when Dr. Casadevall read on the Web that a robot sent into the still-highly-radioactive damaged reactor at Chernobyl had returned with samples of black, melanin-rich fungi that were growing on the reactor's walls. "I found that very interesting and began discussing with colleagues whether these fungi might be using the radiation emissions as an energy source," says Dr. Casadevall.

To test this idea, the Einstein researchers performed a variety of in vivo tests using three genetically diverse fungi and four measures of cell growth. The studies consistently showed that ionizing radiation significantly enhances the growth of fungi that contain melanin.

For example, two types of fungi--one that was induced to make melanin (Crytococcus neoformans) and another that naturally contains it (Wangiella dermatitidis)—were exposed to levels of ionizing radiation approximately 500 times higher than background levels. Both species grew significantly faster (as measured by the number of colony forming units and dry weight) than when exposed to standard background radiation.

The researchers also carried out physico-chemical studies into melanin's ability to capture radiation. By measuring the electron spin resonance signal after melanin was exposed to ionizing radiation, they showed that radiation interacts with melanin to alter its electron structure. This is an essential step for capturing radiation and converting it into a different form of energy to make food.

Dr. Casadevall notes that the melanin in fungi is no different chemically from the melanin in our skin. "It's pure speculation but not outside the realm of possibility that melanin could be providing energy to skin cells," he says. "While it wouldn't be enough energy to fuel a run on the beach, maybe it could help you to open an eyelid."

Karen Gardner | EurekAlert!
Further information:
http://www.aecom.yu.edu

More articles from Studies and Analyses:

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

nachricht Scientists reveal source of human heartbeat in 3-D
07.08.2017 | University of Manchester

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>