Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Finger length helps predict SAT exam results

23.05.2007
The results of numeracy and literacy tests for seven-year-old children can be predicted by measuring the length of their fingers, shows new research.

In a study to be published in the British Journal of Psychology, scientists compared the finger lengths of 75 children with their Standardised Assessment Test (SAT) scores.

They found a clear link between a child’s performance in numeracy and literacy tests and the relative lengths of their index (pointing) and ring fingers.

Scientists believe that the link is caused by different levels of the hormones testosterone and oestrogen in the womb – and the effect they have on both brain development and finger length.

“Testosterone has been argued to promote development of the areas of the brain which are often associated with spatial and mathematical skills,” said Dr Mark Brosnan, Head of the Department of Psychology at the University of Bath, who led the study.

“Oestrogen is thought to do the same in the areas of the brain which are often associated with verbal ability.

“Interestingly, these hormones are also thought have a say in the relative lengths of our index and ring fingers.

“We can use measurements of these fingers as a way of gauging the relative exposure to these two hormones in the womb and as we have shown through this study, we can also use them to predict ability in the key areas of numeracy and literacy.”

The researchers made photocopies of the palm of the children’s hands and then measured the length of their index finger and ring finger on both hands using callipers, accurate to 0.01mm.

They then divided the length of the index finger by that of the ring finger – to calculate the child’s digit ratio.

When they compared this ratio to the children’s SAT scores, they found that a smaller ratio (i.e. a longer ring finger and therefore greater prenatal exposure to testosterone) meant a larger difference between ability in maths and literacy, favouring numeracy relative to literacy.

When they looked at boy’s and girl’s performance separately, the researchers found a clear link between high prenatal testosterone exposure, as measured by digit ratio, and higher numeracy SAT scores in males.

They also found a link between low prenatal testosterone exposure, which resulted in a shorter ring finger compared with the index finger, and higher literacy SAT scores for girls.

This, says the scientists behind the study, suggests that measurements of finger length could help predict how well children will do in maths and literacy.

“We’re not suggesting that finger length measurements could replace SAT tests,” said Dr Brosnan.

“Finger ratio provides us with an interesting insight into our innate abilities in key cognitive areas.

“We are also looking at how digit ratio relates to other behavioural issues, such as technophobia, and career paths.

“There is also interest in using digit ratio to identify developmental disorders, such as dyslexia, which can be defined in terms of literacy deficiencies.”

Andrew McLaughlin | alfa
Further information:
http://www.bath.ac.uk/news/2007/5/23/fingerlength.html

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>