Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dealing deadly cancers a knockout punch

14.05.2007
New scientific evidence is helping to build a compelling case for oncolytic viruses as a first-line and adjunctive treatment for many cancers.

Reovirus, a non-pathogenic virus under development at Calgary, Alberta-based Oncolytics Biotech, has shown powerful anti-cancer activity against cultured tumor cells, in animal models, and in human clinical trials. Oncolytics' proprietary reovirus formulation, Reolysin®, is active against numerous cancers, including intractable sarcomas and melanomas.

Recent studies also indicate that Reolysin works synergistically with standard anti-cancer drugs, providing significantly stronger responses than either agent alone.

In addition, other studies completed in the past year have shown Reolysin has the ability to prime patients' immune systems against their particular cancer, leading to additional cancer cell killing. It is through this second "inflammatory" mechanism that researchers hope Reolysin will bring about long-term remissions of once-untreatable cancers.

At the Fourth International Conference on Oncolytic Viruses as Cancer Therapeutics in March 2007 in Scottsdale, Arizona, several presentations focused on reovirus efficacy alone or in combination with standard chemotherapies.

In one study, investigators examined the tumor-killing ability of reovirus plus cisplatin, a standard chemotherapy agent, in a mouse melanoma model that included both cultured cells and live animals. The results of the preclinical study showed that the combination of reovirus and cisplatin was significantly more effective than cisplatin or reovirus alone at killing melanoma cancer cells in a mouse model. The investigators intend to explore the mechanism of this promising synergistic action in further detail in future preclinical work.

Another presentation at the Arizona conference reported on the use of Reolysin plus the cancer drug cyclophosphamide in an animal model of melanoma. When treated with both agents, test animals experienced enhanced tumor regression compared with either agent alone, and without additional toxicity. Oncolytics has permission from the U.K. regulatory authorities to test Reolysin in three separate human trials in combination with the cancer drugs gemcitabine, paclitaxel/carboplatin and docetaxel.

Perhaps the most exciting findings of Reolysin combination therapy were reported at the American Association for Cancer Research Annual Meeting in April, 2007. In mice transplanted with a human colon cancer, Reolysin plus gemcitabine completely eradicated the tumors in four of five test animals. It is rare to see the virtual elimination of tumours as well as the long-lasting therapeutic effect that was observed in this study.

"Combination therapy results for reovirus in animals are particularly encouraging because they suggest that Reolysin can improve the anti-tumor activity of standard chemotherapy agents in advanced cancer patients without causing additional toxicity," said Dr. Karl Mettinger, Chief Medical Officer of Oncolytics.

Physicians often prefer to treat cancer with multiple agents, but toxicity limits these approaches. Since reovirus typically is not pathogenic in humans nor associated with severe toxicity in clinical studies, its co-administration is not expected to increase a treatment's overall toxicity.

Dual Mechanism

Reovirus works by entering and replicating within cancer cells containing an activated ras pathway, a mutation present in about two-thirds of all human cancers. Reovirus enters a cancer cell, makes thousands of copies of itself, and then causes the cell to burst, which releases viruses that infect and kill adjacent cancer cells. Normal cells are not harmed.

In addition to killing cancer cells directly, reovirus is believed to activate an anti-tumor immune response through the body's natural killer cells and T cells. Through this mechanism, which persists for weeks or months, the body continues to fight off cancer long after the virus clears from the body.

Future directions

On April 11, 2007, Oncolytics announced it had initiated a Phase II trial to evaluate intravenous administration of Reolysin in patients with sarcomas that have metastasized to the lung. For patients with deadly soft tissue sarcoma, the lungs are the most common site of metastatic disease. To date, surgery has been the only effective therapy for metastatic sarcoma.

The multi-center, Phase II study follows successful completion of systemic administration trials with Reolysin in the U.K. and the U.S. This will be the second of several Phase II trials Oncolytics plans for 2007. The Company also has a collaborative agreement with the U.S. National Cancer Institute to conduct multiple clinical trials with Reolysin which are expected to begin in 2007, including a Phase II melanoma trial and a Phase I/II ovarian cancer trial.

"It is hoped that the trials will clearly show that Reolysin alone or in combination with either radiation or chemotherapy can stop or reverse the growth of advanced cancers without adding harmful side effects," said Dr. Mettinger.

Cathy Ward | EurekAlert!
Further information:
http://www.oncolyticsbiotech.ca

More articles from Studies and Analyses:

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>