Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cancer cells 'reprogram' energy needs to grow and spread

09.05.2007
Studying a rare inherited syndrome, researchers at Johns Hopkins have found that cancer cells can reprogram themselves to turn down their own energy-making machinery and use less oxygen, and that these changes might help cancer cells survive and spread.

The Hopkins scientists report that the loss of a single gene in kidney cancer cells causes them to stop making mitochondria, the tiny powerhouses of the cell that consume oxygen to generate energy.

Instead, the cancer cells use the less efficient process of fermentation, which generates less energy but does not require oxygen. As a result, the cancer cells must take in large amounts of glucose. The appetite of cancer cells for glucose is so great that it can be used to identify small groups of tumor cells that have spread throughout the body.

Although changes in mitochondria have been described in many cancers, the Hopkins study shows for the first time how a cancer-causing mutation can block their production.

"There must be a strong advantage to cancer cells to stop using a highly efficient process in favor of one that generates much less energy," says Gregg Semenza, M.D., Ph.D., professor of pediatrics and director of the vascular biology program in the Institute for Cell Engineering at Johns Hopkins.

But turning down the "thermostat" in a sense, may give the cancer cell a survival edge. Reporting in the May 8 issue of Cancer Cell, Semenza and his colleagues found that if they reversed the switch and forced kidney cancer cells to start making mitochondria again, the cells produced increased amounts of free radicals, which can cause cells to stop dividing or even die.

Semenza's team uncovered the mitochondrial mechanism in a study of Von Hippel-Lindau (VHL) syndrome, caused by a single gene mutation and characterized by the tendency to develop tumors in many parts of the body, including the kidney, brain and adrenal glands.

Semenza and colleagues measured mitochondria content and oxygen use in kidney cancer cells that contain no VHL protein and in the same cells with VHL "engineered" back in. Restoring VHL caused the cells to make two to three times more mitochondria and use two to three times more oxygen.

VHL normally blocks the action of HIF-1, a protein that the Hopkins group discovered in 1992. Cells normally make HIF-1 only under low oxygen conditions, when fermentation is necessary to make energy. However, in the absence of VHL, HIF-1 is active even when oxygen is plentiful and switches on genes that help a cell take up more glucose.

This current work shows that excess HIF-1 counteracts a protein called MYC, which normally stimulates cells to make mitochondria. "Because MYC is turned on in many other cancers, these results suggest that shutting down the mitochondria must be a very important event in kidney cancer," Semenza notes.

There is currently no treatment available for patients with advanced kidney cancer. Scientists at pharmaceutical companies, the National Cancer Institute, and laboratories at Hopkins and other universities are investigating whether drugs that inhibit HIF-1 may be useful for cancer therapy.

Audrey Huang | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Studies and Analyses:

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Underwater acoustic localization of marine mammals and vehicles

23.11.2017 | Information Technology

Enhancing the quantum sensing capabilities of diamond

23.11.2017 | Physics and Astronomy

Meadows beat out shrubs when it comes to storing carbon

23.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>