Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cancer cells 'reprogram' energy needs to grow and spread

09.05.2007
Studying a rare inherited syndrome, researchers at Johns Hopkins have found that cancer cells can reprogram themselves to turn down their own energy-making machinery and use less oxygen, and that these changes might help cancer cells survive and spread.

The Hopkins scientists report that the loss of a single gene in kidney cancer cells causes them to stop making mitochondria, the tiny powerhouses of the cell that consume oxygen to generate energy.

Instead, the cancer cells use the less efficient process of fermentation, which generates less energy but does not require oxygen. As a result, the cancer cells must take in large amounts of glucose. The appetite of cancer cells for glucose is so great that it can be used to identify small groups of tumor cells that have spread throughout the body.

Although changes in mitochondria have been described in many cancers, the Hopkins study shows for the first time how a cancer-causing mutation can block their production.

"There must be a strong advantage to cancer cells to stop using a highly efficient process in favor of one that generates much less energy," says Gregg Semenza, M.D., Ph.D., professor of pediatrics and director of the vascular biology program in the Institute for Cell Engineering at Johns Hopkins.

But turning down the "thermostat" in a sense, may give the cancer cell a survival edge. Reporting in the May 8 issue of Cancer Cell, Semenza and his colleagues found that if they reversed the switch and forced kidney cancer cells to start making mitochondria again, the cells produced increased amounts of free radicals, which can cause cells to stop dividing or even die.

Semenza's team uncovered the mitochondrial mechanism in a study of Von Hippel-Lindau (VHL) syndrome, caused by a single gene mutation and characterized by the tendency to develop tumors in many parts of the body, including the kidney, brain and adrenal glands.

Semenza and colleagues measured mitochondria content and oxygen use in kidney cancer cells that contain no VHL protein and in the same cells with VHL "engineered" back in. Restoring VHL caused the cells to make two to three times more mitochondria and use two to three times more oxygen.

VHL normally blocks the action of HIF-1, a protein that the Hopkins group discovered in 1992. Cells normally make HIF-1 only under low oxygen conditions, when fermentation is necessary to make energy. However, in the absence of VHL, HIF-1 is active even when oxygen is plentiful and switches on genes that help a cell take up more glucose.

This current work shows that excess HIF-1 counteracts a protein called MYC, which normally stimulates cells to make mitochondria. "Because MYC is turned on in many other cancers, these results suggest that shutting down the mitochondria must be a very important event in kidney cancer," Semenza notes.

There is currently no treatment available for patients with advanced kidney cancer. Scientists at pharmaceutical companies, the National Cancer Institute, and laboratories at Hopkins and other universities are investigating whether drugs that inhibit HIF-1 may be useful for cancer therapy.

Audrey Huang | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>