Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Cancer cells 'reprogram' energy needs to grow and spread

Studying a rare inherited syndrome, researchers at Johns Hopkins have found that cancer cells can reprogram themselves to turn down their own energy-making machinery and use less oxygen, and that these changes might help cancer cells survive and spread.

The Hopkins scientists report that the loss of a single gene in kidney cancer cells causes them to stop making mitochondria, the tiny powerhouses of the cell that consume oxygen to generate energy.

Instead, the cancer cells use the less efficient process of fermentation, which generates less energy but does not require oxygen. As a result, the cancer cells must take in large amounts of glucose. The appetite of cancer cells for glucose is so great that it can be used to identify small groups of tumor cells that have spread throughout the body.

Although changes in mitochondria have been described in many cancers, the Hopkins study shows for the first time how a cancer-causing mutation can block their production.

"There must be a strong advantage to cancer cells to stop using a highly efficient process in favor of one that generates much less energy," says Gregg Semenza, M.D., Ph.D., professor of pediatrics and director of the vascular biology program in the Institute for Cell Engineering at Johns Hopkins.

But turning down the "thermostat" in a sense, may give the cancer cell a survival edge. Reporting in the May 8 issue of Cancer Cell, Semenza and his colleagues found that if they reversed the switch and forced kidney cancer cells to start making mitochondria again, the cells produced increased amounts of free radicals, which can cause cells to stop dividing or even die.

Semenza's team uncovered the mitochondrial mechanism in a study of Von Hippel-Lindau (VHL) syndrome, caused by a single gene mutation and characterized by the tendency to develop tumors in many parts of the body, including the kidney, brain and adrenal glands.

Semenza and colleagues measured mitochondria content and oxygen use in kidney cancer cells that contain no VHL protein and in the same cells with VHL "engineered" back in. Restoring VHL caused the cells to make two to three times more mitochondria and use two to three times more oxygen.

VHL normally blocks the action of HIF-1, a protein that the Hopkins group discovered in 1992. Cells normally make HIF-1 only under low oxygen conditions, when fermentation is necessary to make energy. However, in the absence of VHL, HIF-1 is active even when oxygen is plentiful and switches on genes that help a cell take up more glucose.

This current work shows that excess HIF-1 counteracts a protein called MYC, which normally stimulates cells to make mitochondria. "Because MYC is turned on in many other cancers, these results suggest that shutting down the mitochondria must be a very important event in kidney cancer," Semenza notes.

There is currently no treatment available for patients with advanced kidney cancer. Scientists at pharmaceutical companies, the National Cancer Institute, and laboratories at Hopkins and other universities are investigating whether drugs that inhibit HIF-1 may be useful for cancer therapy.

Audrey Huang | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>