Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Differences in the brain anatomy predisposed to anxiety disorders were detected

09.05.2007
A study undertaken by researchers of the Universitat Jaume I of Castellón (UJI), the Universitat Autònoma of Barcelona (UAB) and the company Eresa reveals the existence of a different anatomy in small areas of the brain which could help explain why one same stimulus triggers anxiety in some people and not in others.

According to the authors of this research work, which was recently published in the scientific journal NeuroImage, certain brains act via a mechanism which makes them more prone to suffer and not control anxiety than other brains when faced with identical situations. In patients with anxiety disorders, an excessive activation in the face of certain stimuli exists, which activates a disproportionate response to experiences subjectively understood to be tense, stressful or dangerous. Their anxiety would be determined by their excessive activation of fear or their incapacity to fulfil the needs that they consider important. Therefore it would be difficult for them to react to a situation of tension or stress, and this situation would consequently trigger a feeling of frustration; thus the frequent relation of complaints of a depressive nature arises.

A disproportionate feeling of lack of reward, or even punishment, is produced during anxiety disorders. What these Spanish scientists have discovered through functional magnetic resonance is that an excessive activation of the so-called BIS (behavioural inhibition system) exists in this type of patients in the face of adverse stimuli.

The basis of the neuropsychological model of anxiety proposed by the present-day psychology thought is that the natural existence of BIS is activated by stimuli in the form of punishment or lack of reward; innate stimuli of fear in which certain stimuli are experienced as a threat without the need for learning, for example, a train approaching and the risk of being hit; or new fear stimuli acquired through experience or familiarity, such as phobias and post-traumatic stress.

The brain regions involved in the anatomic substrate of BIS are the cerebral amygdala and the septohippocampal system. Therefore, this altered response of anxiety and hyperactivity in patients who are predisposed to suffer anxiety in the face of such stimuli (punishment or lack of reward) can be measured with its incidence on these encephalic areas while patients undergo a test of sensitivity to mechanisms of reward or punishment.

A team of researchers at UJI and UAB in collaboration with Eresa, an image diagnosis company, has carried out a study with 63 individuals who were subjected to the sensitivity test and a magnetic resonance study which quantified the volume of grey matter in the different encephalic structures.

This research work reveals that a greater volume of grey encephalic matter exists in the brain areas of the right parahippocampus, the right cerebral amygdala and the left anterior parahippocampus of some individuals who went on to obtain higher scores in the test. This coincides with some anatomical regions which are triggered in the face of punishment or reward stimuli.

According to Vicente Belloch, the scientific director at Eresa and part-time lecturer at UJI, the combined research of both universities along with Eresa “reveals the existence of a different anatomy in small areas of the brain which could, in part, help explain why a stimulus triggers anxiety in some people but not in others”. However, the researchers recognise that unknown quantities remain to be solved. Benlloch reminds us that “the mechanism by which this increased volume of grey matter leads patients to obtain higher scores in the questionnaire remains unknown”.

Hugo Cerdà | alfa
Further information:
http://www.uji.es/CA/noticies/detall&id_a=9233187

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>