Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Differences in the brain anatomy predisposed to anxiety disorders were detected

09.05.2007
A study undertaken by researchers of the Universitat Jaume I of Castellón (UJI), the Universitat Autònoma of Barcelona (UAB) and the company Eresa reveals the existence of a different anatomy in small areas of the brain which could help explain why one same stimulus triggers anxiety in some people and not in others.

According to the authors of this research work, which was recently published in the scientific journal NeuroImage, certain brains act via a mechanism which makes them more prone to suffer and not control anxiety than other brains when faced with identical situations. In patients with anxiety disorders, an excessive activation in the face of certain stimuli exists, which activates a disproportionate response to experiences subjectively understood to be tense, stressful or dangerous. Their anxiety would be determined by their excessive activation of fear or their incapacity to fulfil the needs that they consider important. Therefore it would be difficult for them to react to a situation of tension or stress, and this situation would consequently trigger a feeling of frustration; thus the frequent relation of complaints of a depressive nature arises.

A disproportionate feeling of lack of reward, or even punishment, is produced during anxiety disorders. What these Spanish scientists have discovered through functional magnetic resonance is that an excessive activation of the so-called BIS (behavioural inhibition system) exists in this type of patients in the face of adverse stimuli.

The basis of the neuropsychological model of anxiety proposed by the present-day psychology thought is that the natural existence of BIS is activated by stimuli in the form of punishment or lack of reward; innate stimuli of fear in which certain stimuli are experienced as a threat without the need for learning, for example, a train approaching and the risk of being hit; or new fear stimuli acquired through experience or familiarity, such as phobias and post-traumatic stress.

The brain regions involved in the anatomic substrate of BIS are the cerebral amygdala and the septohippocampal system. Therefore, this altered response of anxiety and hyperactivity in patients who are predisposed to suffer anxiety in the face of such stimuli (punishment or lack of reward) can be measured with its incidence on these encephalic areas while patients undergo a test of sensitivity to mechanisms of reward or punishment.

A team of researchers at UJI and UAB in collaboration with Eresa, an image diagnosis company, has carried out a study with 63 individuals who were subjected to the sensitivity test and a magnetic resonance study which quantified the volume of grey matter in the different encephalic structures.

This research work reveals that a greater volume of grey encephalic matter exists in the brain areas of the right parahippocampus, the right cerebral amygdala and the left anterior parahippocampus of some individuals who went on to obtain higher scores in the test. This coincides with some anatomical regions which are triggered in the face of punishment or reward stimuli.

According to Vicente Belloch, the scientific director at Eresa and part-time lecturer at UJI, the combined research of both universities along with Eresa “reveals the existence of a different anatomy in small areas of the brain which could, in part, help explain why a stimulus triggers anxiety in some people but not in others”. However, the researchers recognise that unknown quantities remain to be solved. Benlloch reminds us that “the mechanism by which this increased volume of grey matter leads patients to obtain higher scores in the questionnaire remains unknown”.

Hugo Cerdà | alfa
Further information:
http://www.uji.es/CA/noticies/detall&id_a=9233187

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>