Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Differences in the brain anatomy predisposed to anxiety disorders were detected

09.05.2007
A study undertaken by researchers of the Universitat Jaume I of Castellón (UJI), the Universitat Autònoma of Barcelona (UAB) and the company Eresa reveals the existence of a different anatomy in small areas of the brain which could help explain why one same stimulus triggers anxiety in some people and not in others.

According to the authors of this research work, which was recently published in the scientific journal NeuroImage, certain brains act via a mechanism which makes them more prone to suffer and not control anxiety than other brains when faced with identical situations. In patients with anxiety disorders, an excessive activation in the face of certain stimuli exists, which activates a disproportionate response to experiences subjectively understood to be tense, stressful or dangerous. Their anxiety would be determined by their excessive activation of fear or their incapacity to fulfil the needs that they consider important. Therefore it would be difficult for them to react to a situation of tension or stress, and this situation would consequently trigger a feeling of frustration; thus the frequent relation of complaints of a depressive nature arises.

A disproportionate feeling of lack of reward, or even punishment, is produced during anxiety disorders. What these Spanish scientists have discovered through functional magnetic resonance is that an excessive activation of the so-called BIS (behavioural inhibition system) exists in this type of patients in the face of adverse stimuli.

The basis of the neuropsychological model of anxiety proposed by the present-day psychology thought is that the natural existence of BIS is activated by stimuli in the form of punishment or lack of reward; innate stimuli of fear in which certain stimuli are experienced as a threat without the need for learning, for example, a train approaching and the risk of being hit; or new fear stimuli acquired through experience or familiarity, such as phobias and post-traumatic stress.

The brain regions involved in the anatomic substrate of BIS are the cerebral amygdala and the septohippocampal system. Therefore, this altered response of anxiety and hyperactivity in patients who are predisposed to suffer anxiety in the face of such stimuli (punishment or lack of reward) can be measured with its incidence on these encephalic areas while patients undergo a test of sensitivity to mechanisms of reward or punishment.

A team of researchers at UJI and UAB in collaboration with Eresa, an image diagnosis company, has carried out a study with 63 individuals who were subjected to the sensitivity test and a magnetic resonance study which quantified the volume of grey matter in the different encephalic structures.

This research work reveals that a greater volume of grey encephalic matter exists in the brain areas of the right parahippocampus, the right cerebral amygdala and the left anterior parahippocampus of some individuals who went on to obtain higher scores in the test. This coincides with some anatomical regions which are triggered in the face of punishment or reward stimuli.

According to Vicente Belloch, the scientific director at Eresa and part-time lecturer at UJI, the combined research of both universities along with Eresa “reveals the existence of a different anatomy in small areas of the brain which could, in part, help explain why a stimulus triggers anxiety in some people but not in others”. However, the researchers recognise that unknown quantities remain to be solved. Benlloch reminds us that “the mechanism by which this increased volume of grey matter leads patients to obtain higher scores in the questionnaire remains unknown”.

Hugo Cerdà | alfa
Further information:
http://www.uji.es/CA/noticies/detall&id_a=9233187

More articles from Studies and Analyses:

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

nachricht Urbanization to convert 300,000 km2 of prime croplands
27.12.2016 | Mercator Research Institute on Global Commons and Climate Change (MCC) gGmbH

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

How gut bacteria can make us ill

18.01.2017 | Life Sciences

On track to heal leukaemia

18.01.2017 | Health and Medicine

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>