Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


A frown or a smile? Children with autism can't discern

Area of brain that plays a role in evaluating emotions shows no activity
When we have a conversation with someone, we not only hear what they say, we see what they say. Eyes can smolder or twinkle. Gazes can be direct or shifty. “Reading” these facial expressions gives context and meaning to the words we hear.

In a report to be presented May 5 at the International Meeting for Autism Research in Seatlle, researchers from UCLA will show that children with autism can’t do this. They hear and they see, of course, but the areas of the brain that normally respond to such visual cues simply do not respond.

Led by Mari Davies, a UCLA graduate student in psychology, and Susan Bookheimer, a professor of psychiatry and biobehavioral sciences at the Semel Institute for Neuroscience and Human Behavior at UCLA, the research compared brain activity between 16 typically developing children and 16 high-functioning children with autism. While undergoing functional magnetic resonance imaging (fMRI), both groups were shown a series of faces depicting angry, fearful, happy and neutral expressions. In half the faces, the eyes were averted; with the other half, the faces stared back at the children.

With the typically developing group, the researchers found significant differences in activity in a part of the brain called the ventrolateral prefrontal cortex (VLPFC), which is known to play a role in evaluating emotions. While these children looked at the direct-gaze faces, the VLPFC became active; with the averted-gaze pictures, it quieted down. In contrast, the autistic children showed no activity in this region of the brain whether they were looking at faces with a direct or an indirect gaze.

“This part of the brain helps us discern the meaning and significance of what another person is thinking,” Davies said. “When responding to someone looking straight at you, as compared to someone who’s looking away, the brain discerns a difference. When the other person looks away, the brain quiets down.”

For instance, with angry expressions, the brain may quiet down, because when a negative gaze is averted, it is no longer seen as a direct threat. “Gaze has a huge impact on our brains because it conveys part of the meaning of that expression to the individual. It cues the individual to what is significant,” Davies said.

While the results show the key role of eye gaze in signaling communicative intent, it also shows that autistic children, even when gazing directly into someone’s eyes, don’t recognize visual cues and don’t process that information. That may be why children diagnosed with autism have varying degrees of impairment in communication skills and social interactions and display restricted, repetitive and stereotyped patterns of behavior.

“They don’t pick up what’s going on — they miss the nuances, the body language and facial expressions and sometimes miss the big picture and instead focus on minor, less socially relevant details,” Davies said. “That, in turn, affects interpersonal bonds.”

Mark Wheeler | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>