Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


A frown or a smile? Children with autism can't discern

Area of brain that plays a role in evaluating emotions shows no activity
When we have a conversation with someone, we not only hear what they say, we see what they say. Eyes can smolder or twinkle. Gazes can be direct or shifty. “Reading” these facial expressions gives context and meaning to the words we hear.

In a report to be presented May 5 at the International Meeting for Autism Research in Seatlle, researchers from UCLA will show that children with autism can’t do this. They hear and they see, of course, but the areas of the brain that normally respond to such visual cues simply do not respond.

Led by Mari Davies, a UCLA graduate student in psychology, and Susan Bookheimer, a professor of psychiatry and biobehavioral sciences at the Semel Institute for Neuroscience and Human Behavior at UCLA, the research compared brain activity between 16 typically developing children and 16 high-functioning children with autism. While undergoing functional magnetic resonance imaging (fMRI), both groups were shown a series of faces depicting angry, fearful, happy and neutral expressions. In half the faces, the eyes were averted; with the other half, the faces stared back at the children.

With the typically developing group, the researchers found significant differences in activity in a part of the brain called the ventrolateral prefrontal cortex (VLPFC), which is known to play a role in evaluating emotions. While these children looked at the direct-gaze faces, the VLPFC became active; with the averted-gaze pictures, it quieted down. In contrast, the autistic children showed no activity in this region of the brain whether they were looking at faces with a direct or an indirect gaze.

“This part of the brain helps us discern the meaning and significance of what another person is thinking,” Davies said. “When responding to someone looking straight at you, as compared to someone who’s looking away, the brain discerns a difference. When the other person looks away, the brain quiets down.”

For instance, with angry expressions, the brain may quiet down, because when a negative gaze is averted, it is no longer seen as a direct threat. “Gaze has a huge impact on our brains because it conveys part of the meaning of that expression to the individual. It cues the individual to what is significant,” Davies said.

While the results show the key role of eye gaze in signaling communicative intent, it also shows that autistic children, even when gazing directly into someone’s eyes, don’t recognize visual cues and don’t process that information. That may be why children diagnosed with autism have varying degrees of impairment in communication skills and social interactions and display restricted, repetitive and stereotyped patterns of behavior.

“They don’t pick up what’s going on — they miss the nuances, the body language and facial expressions and sometimes miss the big picture and instead focus on minor, less socially relevant details,” Davies said. “That, in turn, affects interpersonal bonds.”

Mark Wheeler | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Physicists made crystal lattice from polaritons

20.03.2018 | Physics and Astronomy

Mars' oceans formed early, possibly aided by massive volcanic eruptions

20.03.2018 | Physics and Astronomy

Thawing permafrost produces more methane than expected

20.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>