Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Diagnostic ultrasound could provide automated method of fingerprint identification

07.05.2007
Diagnostic 3D ultrasound of fingers could be used for biometric identification based on matching paired images using internal fingerprint structures that would be difficult to fake, offering the possibility of a unique automated fingerprint identification system, according to a new study by researchers from the University of Michigan in Ann Arbor.

For the study, 3D images were collected of the fingers of 20 volunteers. A group of four readers, including two musculoskeletal radiologists, then attempted to match the pairs based on anatomic and physiological features of the human finger. Radiologists matching the image pairs were 100% successful, and the average success of all four readers was 96%.

"The purpose of the study was to evaluate whether the use of internal finger structure as imaged using ultrasound could act as a supplement to standard methods of biometric identification. Also, this study provides a way of assessing physiologic and cardiovascular status, for example, whether the person is alive or not, which is not known from just their external fingerprints. There is a wide range of applications for an inexpensive ultrasonic fingerprint reader, including widespread use in cell phones," according to Ganesh Narayanasamy, PhD candidate in Applied Physics and lead author of the study.

Besides its many possible biometric identification uses, the findings also have a medical application, say the authors. "This could become a method of patient identification and even continuous physiologic monitoring. The techniques should become useful for other types of musculoskeletal ultrasound and for monitoring of arthritis treatments," said Dr. Narayanasamy.

Necoya Lightsey | EurekAlert!
Further information:
http://www.arrs.org

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>