Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover first gene that specifically links calorie restriction to longevity

03.05.2007
In studies going back to the 1930’s, mice and many other species subsisting on a severely calorie-restricted diet have consistently outlived their well-fed peers by as much as 40 percent. But just how a diet verging on the brink of starvation extends lifespan has remained elusive.

Now, researchers at the Salk Institute for Biological Studies have cracked open the black box of how persistent hunger promotes long life and identified a critical gene that specifically links calorie restriction (CR) to longevity.

“After 72 years of not knowing how calorie restriction works, we finally have genetic evidence to unravel the underlying molecular program required for increased longevity in response to calorie restriction,” says Andrew Dillin, Ph.D., an associate professor in the Molecular and Cell Biology Laboratory, who led the study published online in the May 2 issue of Nature.

Having identified a key link between calorie restriction and aging also opens the door to development of drugs that mimic the effects of calorie restriction and might allow people to reap health benefits without adhering to an austere regimen that only ascetics can endure.

Initially, researchers thought that the effect of calorie restriction on aging was mediated through insulin-like signaling pathways in the roundworm Caenorhabditis elegans (C. elegans), but experiments by graduate student Siler Panowski in Dillin’s lab suggested otherwise.

In the worm, signals passed down the insulin/IGF-1 pathway regulate a DNA-binding protein called DAF-16 that belongs to what is called the forkhead family. It was believed that DAF-16 then regulated expression of genes associated with longevity. Dillin had also identified a co-regulator in the pathway called SMK-1 that apparently worked with DAF-16 to regulate longevity.

“When we asked whether DAF-16 and SMK-1 proteins were both necessary for CR-mediated longevity, DAF-16 turned out to be unnecessary but, somewhat surprisingly, SMK-1 was,” says first author Panowski.

Since 15 other forkhead-like factors are expressed in C. elegans, graduate student Suzanne Wolff and former post-doctoral fellow Hugo Aguilaniu, Ph.D., now an assistant professor at the École Normale Supérieure de Lyon, France, set out to determine if any of them teamed up with SMK-1 to delay aging in the CR-response. They did this by knocking out each gene separately and observing whether the genetically altered worms still showed enhanced longevity when calorie-restricted.

Loss of only one of the genes, a gene encoding the protein PHA-4, negated the lifespan-enhancing effect of calorie-restriction in worms. And, when researchers undertook the opposite experiment—by overexpressing pha-4 in worms—the longevity effect was enhanced. “PHA-4 acts completely independent of insulin/IGF-1 signaling and turns out to be essential for CR-mediated longevity,” says Panowski.

So far, only one other gene, called sir-2, has been implicated in the life- and health-prolonging response to calorie restriction. Increased amounts of SIR-2 protein extend longevity of yeast, worms, and flies, but while loss of sir-2 disrupts the calorie restriction response only in yeast, it has no effect on other organisms, such as worms.

“We know three distinct pathways that affect longevity: insulin/IGF signaling, calorie restriction, and the mitochondrial electron transport chain pathway, yet it is still not clear where sir-2 fits in. It seems to meddle with more than one pathway,” says Dillin and adds that “PHA-4 is specific for calorie restriction as it does not affect the other pathways.”

Humans possess three genes highly similar to worm pha-4, all belonging to what is called the Foxa family. All three play an important role in development and then later on in the regulation of glucagon, a pancreatic hormone that unlike insulin increases the concentration of blood sugar and maintains the body’s energy balance, especially during fasting.

The potential payoff for cutting to 60 percent of normal while maintaining a healthy diet rich in vitamins, minerals, and other nutrients, is huge. Currently it is the only strategy apart from direct genetic manipulation that consistently prolongs life and reduces the risk of cancer, diabetes, and cardiovascular disease, while staving off age-related neurodegeneration in laboratory animals from mice to monkeys. Although some people are already imposing this strict regimen upon themselves, it is too early tell whether calorie restriction will have the same effect in humans.

Gina Kirchweger | EurekAlert!
Further information:
http://www.salk.edu

More articles from Studies and Analyses:

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

nachricht Urbanization to convert 300,000 km2 of prime croplands
27.12.2016 | Mercator Research Institute on Global Commons and Climate Change (MCC) gGmbH

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Solar Collectors from Ultra-High Performance Concrete Combine Energy Efficiency and Aesthetics

16.01.2017 | Trade Fair News

3D scans for the automotive industry

16.01.2017 | Automotive Engineering

Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs

16.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>