Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MNI researchers find a new role for mitochondria in cellular copper regulation

03.05.2007
A penny for your thoughts

Copper is an essential part of our lives. From copper pipes and wires - to important copper-containing proteins in the body, copper is necessary for healthy growth and neurological development. Researchers at the Montreal Neurological Institute at McGill University are studying how copper is processed in our bodies and its distinct role in early development.

Their findings, published in a recent edition of the journal Cell Metabolism, identify a new role for two proteins involved with copper regulation. This study may lead to a better understanding of how to treat individuals affected by copper imbalances.

"Copper is important in maintaining healthy cells. When copper is not properly regulated in the body it can lead to diseases of the liver, kidneys, brains and eyes," says Dr. Eric Shoubridge, a professor of Human Genetics at the Montreal Neurological Institute, McGill University and lead investigator. "We know that copper is especially important in early development, playing a vital role in the proper formation of organs. Mutations in two copper-carrying proteins, SCO1 and SCO2 have been implicated in a number of neonatal diseases."

Copper is required for the activity of a number of enzymes including cytochrome c oxidase (COX) in the mitochondria -the energy suppliers of the body. "Our study is the first to characterize an unexpected cell-signaling or messenger role for the two copper-carrying proteins, SCO1 and SCO2, which are necessary for the assembly of COX," says Shoubridge.

To characterize the roles of SCO1 and SCO2, Shoubridge and colleagues looked at cells that contained mutated forms of either one or both of these molecules. The study shows that both proteins have a role in maintaining the balance of copper between different cellular compartments. "These findings add two members to a growing list of bi-functional proteins that participate in copper metabolism." adds Shoubridge. "Identifying this new role for SCO1 and SCO2 is significant in developing better therapies for several neurological diseases.

Anita Kar | EurekAlert!
Further information:
http://www.mcgill.ca

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

'Lipid asymmetry' plays key role in activating immune cells

20.02.2018 | Life Sciences

MRI technique differentiates benign breast lesions from malignancies

20.02.2018 | Medical Engineering

Major discovery in controlling quantum states of single atoms

20.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>