Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Wrapping' Gleevec fights drug-resistant cancer

03.05.2007
Re-engineered drug effective against both drug-resistant, nonresistant cells

A new study highlighted on the cover of this week's issue of Cancer Research finds that the anti-cancer drug Gleevec® is far more effective against a drug-resistant strain of cancer when the drug wraps the target with a molecular bandage that seals out water from a critical area. The research appears as a priority report in the journal's May 1 issue.

The wrapping version of the drug – known as WBZ-7 – was created, produced and tested by three research teams, one headed by Ariel Fernandez from Rice University and the other two headed respectively by William Bornmann and Dr. Gabriel Lopez-Berestein from the University of Texas M. D. Anderson Cancer Center in Houston. The work sprang from a new collaborative partnership between the two institutions. In laboratory studies, WBZ-7 was found to be effective against a form of gastrointestinal cancer that has developed a resistance to imatinib, the drug sold under the brand name Gleevec®.

Imatinib is one of the most effective of a new generation of cancer drugs that are designed to attack cancer cells and leave healthy cells unharmed. Imatinib targets a protein called KIT that plays a role in cell reproduction. In healthy cells, KIT is active only on rare occasions, but in some cancers the protein is always "on," acting as a biochemical catalyst that spurs cancer cells to constantly reproduce.

"The re-engineered version of imatinib accomplishes three things," said Rice bioengineering professor Ariel Fernandez, who designed the modified drug. "It binds with KIT. It binds with the most effective imatinib-resistant version of KIT. And finally, it binds in a way that ensures that any further version of KIT that becomes resistant to WBZ-7 will no longer be effective as a catalyst for cell reproduction."

Fernandez and his Rice colleagues – postdoctoral researcher Alejandro Crespo and graduate student Xi Zhang – developed the wrapping Gleevec® variant WBZ-7. The wrapping prototype is a kind of molecular bandage that's designed to keep water molecules from getting near the "active site" of KIT – the part of the protein that imatinib targets.

"Like virtually all proteins, KIT has packing defects that leave some hydrogen bonds poorly shielded from water attack," Fernandez said. "These bonds, which are called dehydrons, are in the twilight zone between order and disorder."

In KIT, there is a dehydron near the active site that plays a key role in drug resistance. WBZ-7 seals off this dehydron.

Fernandez said WBZ-7 is identical to imatinib, save for the addition of four atoms – a carbon and three hydrogens – at a key point. Though the change appears to be minimal at first glance, finding a method to synthesize the compound was complex and challenging, Fernandez said. The task fell on Bornmann, a director of the Center for Targeted Therapy's Translational Chemistry Service, and his colleagues Shimei Wang and Zhenghong Peng – who dubbed the compound WBZ-7 based on their initials and the fact that it was the seventh compound they'd made together.

Following the drug's synthesis, a second team of M. D. Anderson researchers, led by Lopez-Berestein, a professor in the Department of Experimental Therapeutics, and including Angela Sanguino and Eylem Ozturk, embarked on a comprehensive testing program. In the first stage of testing, WBZ-7's effects were tested against more than 250 catalytic proteins called kinases, which are in the same class of proteins as KIT, to make sure the drug would not have unintended consequences. Finally, a range of in vitro tests were conducted. The tests confirmed that WBZ-7 was just as effective against both non-resistant and drug-resistant strains of gastrointestinal cancer cells.

WBZ-7 is not yet available for human testing, and a date for human trials has not been set. Fernandez said the research team is preparing for the next phase of testing in laboratory animals.

Jade Boyd | EurekAlert!
Further information:
http://www.rice.edu

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>