Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


First research to show that diabetes damages DNA in men’s sperm and may affect fertility

Scientists have found that sperm from diabetic men have greater levels of DNA damage than sperm from men who do not have the disease. They warn that such DNA damage might affect a man’s fertility.

In the first study [1] to compare the quality of DNA in sperm from diabetic and non-diabetic men, the researchers from Belfast, Northern Ireland showed that the DNA in the nuclei of the sperm cells had greater levels of fragmentation in diabetic men (52%, versus 32% in non-diabetic men), and that there were more deletions of DNA in the tiny, energy-generating structures in the cells called mitochondria (4 versus 3).

Dr Ishola Agbaje, who undertook the research published online today (Thursday 3 May) in the journal Human Reproduction, said: “As far as we know, this is the first report of the quality of DNA in the nucleus and mitochondria of sperm in diabetes. Our study identifies important evidence of increased DNA fragmentation of nuclear DNA and mitochondrial DNA deletions in sperm from diabetic men. These findings cause concern, as they may have implications for fertility.”

The incidence of type 1 and type 2 diabetes is increasing rapidly worldwide. While diet and obesity are known to be key factors in the increase of type 2 (or late onset) diabetes, type 1 diabetes which is usually diagnosed in childhood or adolescence, is increasing by three per cent a year in European children, although the reason for this is not entirely clear. Genetic factors that make people more susceptible, or environmental factors such as viruses that may trigger the onset of type 1 diabetes, could play a role.

Dr Agbaje, a research fellow in the Reproductive Medicine Research Group at Queen’s University, Belfast, said: “If the increasing trend in the incidence of type I diabetes continues, this will result in a 50% increase over the next ten years. As a consequence, diabetes will affect many more men prior to and during their reproductive years. Infertility is already a major health problem in both the developed and developing world, with up to one in six couples requiring specialist investigation or treatment in order to conceive. Moreover, the last 50 years have seen an apparent decline in semen quality. Sperm disorders are thought to cause or contribute to infertility in 40-50% of infertile couples. The increasing incidence of systemic diseases such as diabetes may further exacerbate this decline in male fertility. However, it is not clear to what extent clinics consider information about the diabetic status of their patients when investigating fertility problems.” [2]

Dr Agbaje and his colleagues examined sperm from 27 diabetic men, with an average age of 34, and 29 non-diabetic men with an average age of 33. They found that although semen volume was significantly less in diabetic men (2.6 versus 3.3 ml), there were no significant differences in sperm concentration, total sperm output, form and structure of the sperm or their ability to move. When they measured DNA damage they found that the percentage of fragmented nuclear DNA was significantly higher in sperm from the diabetic men and that the number of deletions in mitochondrial DNA was also higher – the number of deletions ranged from three to six (average four) in the diabetic men and from one to four (average three) in the non-diabetic men.

Professor Sheena Lewis, scientific director of the Reproductive Medicine Research Group, said: “Our study shows increased levels of sperm DNA damage in diabetic men. From a clinical perspective this is important, particularly given the overwhelming evidence that sperm DNA damage impairs male fertility and reproductive health. Other studies have already shown that, while the female egg has a limited ability to repair damaged sperm DNA, fragmentation beyond this threshold may result in increased rates of embryonic failure and pregnancy loss. In the context of spontaneous conception, sperm DNA quality has been found to be poorer in couples with a history of miscarriages.”

However, Prof Lewis said that it was not possible to say from this current study whether the DNA damage caused by diabetes would have the same effect on men’s fertility and the health of future children as DNA damage caused by other factors such as smoking.

“This is just one, relatively small study that highlights a possible concern. Further studies need to be carried out in order to understand the precise nature of the diabetes-related damage, the causal mechanisms and the clinical significance. Given the global rise in the prevalence of diabetes, it is also vital to examine the reproductive outcomes of pregnancies fathered by diabetic men, and the prevalence of diabetes amongst men attending for infertility treatment,” she concluded.

[1] Insulin dependent diabetes mellitus: implications for male reproductive function. Human Reproduction. doi:10.1093/humrep/dem077.

[2] Studies have estimated the prevalence of diabetes in sub-fertile men as 1% – three times more than expected (0.3%), given the prevalence of diabetes and male infertility in the general population. This suggests that diabetes is having a significant impact on male fertility.

Emma Mason | alfa
Further information:

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>