Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Aerodynamic performance of the swift unravelled

26.04.2007
A swift adapts the shape of its wings to the immediate task at hand: folding them back to chase insects, or stretching them out to sleep in flight. Ten Dutch and Swedish scientists, based in Wageningen, Groningen, Delft, Leiden, and Lund, have shown how 'wing morphing' makes swifts such versatile flyers.

Their study, published as cover story in Nature on April 26, proves that swifts can improve flight performance by up to three-fold, numbers that make 'wing morphing' the next big thing in aircraft engineering.

Swifts spend almost their entire life in the air. During flight, they continually change the shape of their wings from spread wide to swept back. When they fly slowly and straight on, extended wings carry swifts 1.5 times farther and keep them airborne twice as long. To fly fast, swifts need to sweep back their wings to gain a similar advantage.

Economic turns

During the summer, we can observe swifts circling above town squares, where they catch up to 20.000 insects a day. Swift can triple their efficiency by turning with their wings stretched out. When chasing rivals and flying insects, swifts also want to make their turns fast and tight. However, in fast and diving turns, the load on the wings easily reaches more than four times the swift's body weight. So in extreme turns, swifts need to sweep back their wings or else risk breaking them.

Night's rest

Swifts do not land to roost, but spend the night at 1.5 km above the ground. To measure their flight speed, Swedish scientists used radar. They found that swifts let the air blow past their wings at 8 to 10 m/s (29-36 km/h). At these air speeds, swift wings deliver maximum flight efficiency. For the swift that means more gliding and less flapping to maintain altitude.

The scientists figured all this out when they measured just how much lift and drag a swift wing generates. The wings were tested to their limit in a windtunnel at speeds of up to 108 km/h (30 metres per second).Scientists compared extended and swept wings, and learnt that flying slowly with extended wings gives swifts maximum flight efficiency. But swept wings deliver a better aerodynamic performance for flying fast and straight. Swept wings are also better for fast and tight turns; but this time swept wings are better because they do not break as easily as extended wings.

Airplanes

Morphing wings are the latest trend in aviation. The best wing shape to save fuel costs depends on flight speed. In 2003, birds inspired NASA to design a revolutionary "morphing wing" aircraft. Also so-called micro-aircraft, which are the size of a bird, begin to exploit the benefits of varying wing shape. These tiny flyers, equipped with cameras and sensors to assist in surveillance and espionage, imitate faithfully the flight behaviour and appearance of birds. In an ongoing project, students at Delft University cooperate with scientist at Wageningen, to make such a small airplane fly like a swift.

The swifts for this study had been brought in dead or dying to seven Dutch bird sanctuaries. Swifts, when forced to land on the ground, cannot take off by themselves and will starve unless a kind and timely passer-by throws them in the air. Swifts are the most aerial of birds. They migrate annually from South Africa to Europe. Over their lifetime, swifts cover 4.5 million kilometres, a distance equal to six round trips to the moon or 100 times around the Earth. At day, swifts hunt insects; at night they 'roost' in flight. Swifts even mate in the air and land only lay their eggs, in nests tucked away into crevices of walls and cliffs. Swifts are not related to swallows. They are family of another well-known aerial acrobat, the hummingbird.

Jac Niessen | alfa
Further information:
http://www.wur.nl

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>