Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Aerodynamic performance of the swift unravelled

26.04.2007
A swift adapts the shape of its wings to the immediate task at hand: folding them back to chase insects, or stretching them out to sleep in flight. Ten Dutch and Swedish scientists, based in Wageningen, Groningen, Delft, Leiden, and Lund, have shown how 'wing morphing' makes swifts such versatile flyers.

Their study, published as cover story in Nature on April 26, proves that swifts can improve flight performance by up to three-fold, numbers that make 'wing morphing' the next big thing in aircraft engineering.

Swifts spend almost their entire life in the air. During flight, they continually change the shape of their wings from spread wide to swept back. When they fly slowly and straight on, extended wings carry swifts 1.5 times farther and keep them airborne twice as long. To fly fast, swifts need to sweep back their wings to gain a similar advantage.

Economic turns

During the summer, we can observe swifts circling above town squares, where they catch up to 20.000 insects a day. Swift can triple their efficiency by turning with their wings stretched out. When chasing rivals and flying insects, swifts also want to make their turns fast and tight. However, in fast and diving turns, the load on the wings easily reaches more than four times the swift's body weight. So in extreme turns, swifts need to sweep back their wings or else risk breaking them.

Night's rest

Swifts do not land to roost, but spend the night at 1.5 km above the ground. To measure their flight speed, Swedish scientists used radar. They found that swifts let the air blow past their wings at 8 to 10 m/s (29-36 km/h). At these air speeds, swift wings deliver maximum flight efficiency. For the swift that means more gliding and less flapping to maintain altitude.

The scientists figured all this out when they measured just how much lift and drag a swift wing generates. The wings were tested to their limit in a windtunnel at speeds of up to 108 km/h (30 metres per second).Scientists compared extended and swept wings, and learnt that flying slowly with extended wings gives swifts maximum flight efficiency. But swept wings deliver a better aerodynamic performance for flying fast and straight. Swept wings are also better for fast and tight turns; but this time swept wings are better because they do not break as easily as extended wings.

Airplanes

Morphing wings are the latest trend in aviation. The best wing shape to save fuel costs depends on flight speed. In 2003, birds inspired NASA to design a revolutionary "morphing wing" aircraft. Also so-called micro-aircraft, which are the size of a bird, begin to exploit the benefits of varying wing shape. These tiny flyers, equipped with cameras and sensors to assist in surveillance and espionage, imitate faithfully the flight behaviour and appearance of birds. In an ongoing project, students at Delft University cooperate with scientist at Wageningen, to make such a small airplane fly like a swift.

The swifts for this study had been brought in dead or dying to seven Dutch bird sanctuaries. Swifts, when forced to land on the ground, cannot take off by themselves and will starve unless a kind and timely passer-by throws them in the air. Swifts are the most aerial of birds. They migrate annually from South Africa to Europe. Over their lifetime, swifts cover 4.5 million kilometres, a distance equal to six round trips to the moon or 100 times around the Earth. At day, swifts hunt insects; at night they 'roost' in flight. Swifts even mate in the air and land only lay their eggs, in nests tucked away into crevices of walls and cliffs. Swifts are not related to swallows. They are family of another well-known aerial acrobat, the hummingbird.

Jac Niessen | alfa
Further information:
http://www.wur.nl

More articles from Studies and Analyses:

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

nachricht Scientists reveal source of human heartbeat in 3-D
07.08.2017 | University of Manchester

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>