Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Aerodynamic performance of the swift unravelled

26.04.2007
A swift adapts the shape of its wings to the immediate task at hand: folding them back to chase insects, or stretching them out to sleep in flight. Ten Dutch and Swedish scientists, based in Wageningen, Groningen, Delft, Leiden, and Lund, have shown how 'wing morphing' makes swifts such versatile flyers.

Their study, published as cover story in Nature on April 26, proves that swifts can improve flight performance by up to three-fold, numbers that make 'wing morphing' the next big thing in aircraft engineering.

Swifts spend almost their entire life in the air. During flight, they continually change the shape of their wings from spread wide to swept back. When they fly slowly and straight on, extended wings carry swifts 1.5 times farther and keep them airborne twice as long. To fly fast, swifts need to sweep back their wings to gain a similar advantage.

Economic turns

During the summer, we can observe swifts circling above town squares, where they catch up to 20.000 insects a day. Swift can triple their efficiency by turning with their wings stretched out. When chasing rivals and flying insects, swifts also want to make their turns fast and tight. However, in fast and diving turns, the load on the wings easily reaches more than four times the swift's body weight. So in extreme turns, swifts need to sweep back their wings or else risk breaking them.

Night's rest

Swifts do not land to roost, but spend the night at 1.5 km above the ground. To measure their flight speed, Swedish scientists used radar. They found that swifts let the air blow past their wings at 8 to 10 m/s (29-36 km/h). At these air speeds, swift wings deliver maximum flight efficiency. For the swift that means more gliding and less flapping to maintain altitude.

The scientists figured all this out when they measured just how much lift and drag a swift wing generates. The wings were tested to their limit in a windtunnel at speeds of up to 108 km/h (30 metres per second).Scientists compared extended and swept wings, and learnt that flying slowly with extended wings gives swifts maximum flight efficiency. But swept wings deliver a better aerodynamic performance for flying fast and straight. Swept wings are also better for fast and tight turns; but this time swept wings are better because they do not break as easily as extended wings.

Airplanes

Morphing wings are the latest trend in aviation. The best wing shape to save fuel costs depends on flight speed. In 2003, birds inspired NASA to design a revolutionary "morphing wing" aircraft. Also so-called micro-aircraft, which are the size of a bird, begin to exploit the benefits of varying wing shape. These tiny flyers, equipped with cameras and sensors to assist in surveillance and espionage, imitate faithfully the flight behaviour and appearance of birds. In an ongoing project, students at Delft University cooperate with scientist at Wageningen, to make such a small airplane fly like a swift.

The swifts for this study had been brought in dead or dying to seven Dutch bird sanctuaries. Swifts, when forced to land on the ground, cannot take off by themselves and will starve unless a kind and timely passer-by throws them in the air. Swifts are the most aerial of birds. They migrate annually from South Africa to Europe. Over their lifetime, swifts cover 4.5 million kilometres, a distance equal to six round trips to the moon or 100 times around the Earth. At day, swifts hunt insects; at night they 'roost' in flight. Swifts even mate in the air and land only lay their eggs, in nests tucked away into crevices of walls and cliffs. Swifts are not related to swallows. They are family of another well-known aerial acrobat, the hummingbird.

Jac Niessen | alfa
Further information:
http://www.wur.nl

More articles from Studies and Analyses:

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>