Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why GNEP can't jump to the future

24.04.2007
New study highlights flaws in President's nuclear proposal

Congress is now considering whether to approve or zero out the $405 million that President Bush is proposing to spend in fiscal year 2008 on the Global Nuclear Energy Partnership (GNEP)—a program aimed at rendering plutonium inert in nuclear weapons but still useful in nuclear power plants.

Nuclear experts at the National Academy of Sciences have long questioned the practicability of the technologies GNEP plans to employ. Currently, the Government Accounting Office is now reviewing the program. This, however, leaves legislators with an information gap as they struggle to decide whether to fully fund the plan, eliminate it altogether, or redirect some of its funding to the many successful energy programs whose budgets President Bush is proposing to gut in FY 2008. In particular, major questions have been raised about the magnitude and costs of radioactive wastes stemming from the GNEP program.

To help legislators and the American public bridge this information gap, the Institute for Policy Studies will release a rigorous study of GNEP on April 23rd. Directed by Robert Alvarez, Senior Policy Advisor to the U.S. Secretary of Energy from 1993 to 1999, the report concludes that the program is likely to squander billions in taxpayer dollars on an unproven reprocessing technology that will generate unprecedented and unmanageable amounts of highly radioactive wastes without plausible disposition paths.

The potentially deadly flaws documented in Alvarez’s study include:

- The amount of long-lived radioactivity disposed of into the environment at a reprocessing site could be thousands of times greater than from nuclear weapons production. Much smaller concentrations of similar wastes at the DOE’s Savannah River Site have been characterized by the National Academy of Sciences as representing "a long term safety concern."

- GNEP would allow large quantities of cesium 135—a radionuclide with a half life of 2.3 million years—to be disposed in the near surface and pose serious contamination problems for many thousands of years.

- More than four thousand shipments of spent nuclear reactor fuel will be transported on rails and highways through cities and farmlands to the reprocessing site, posing unprecedented emergency response and security challenges.

- Despite DOE’s claims that recycling of reactor spent fuel will solve the nuclear waste disposal problem, a small fraction is likely to be recycled. Uranium constitutes more than 95 percent of the materials in spent nuclear fuel by weight. But, it will require costly treatment for reuse in reactors – estimated in the billions of dollars. As a result, DOE’s plans include the landfill disposal of tens of thousands of tons of recovered uranium.

Alvarez’s study concludes that the Energy Department "lacks a credible plan for management and disposal of radioactive wastes stemming from the GNEP program, particularly regarding waste volumes, site specific impacts, regulatory requirements and life-cycle costs."

Or as Alvarez has put it more bluntly in conversation, "You can’t just park some of the most highly radioactive wastes in the world at a landfill and assume that by so doing you have kept them safely removed from humans for the next 2.3 million years."

Denise Hughes | EurekAlert!
Further information:
http://www.ips-dc.org/

More articles from Studies and Analyses:

nachricht Physics of bubbles could explain language patterns
25.07.2017 | University of Portsmouth

nachricht Obstructing the ‘inner eye’
07.07.2017 | Friedrich-Schiller-Universität Jena

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>