Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why GNEP can't jump to the future

24.04.2007
New study highlights flaws in President's nuclear proposal

Congress is now considering whether to approve or zero out the $405 million that President Bush is proposing to spend in fiscal year 2008 on the Global Nuclear Energy Partnership (GNEP)—a program aimed at rendering plutonium inert in nuclear weapons but still useful in nuclear power plants.

Nuclear experts at the National Academy of Sciences have long questioned the practicability of the technologies GNEP plans to employ. Currently, the Government Accounting Office is now reviewing the program. This, however, leaves legislators with an information gap as they struggle to decide whether to fully fund the plan, eliminate it altogether, or redirect some of its funding to the many successful energy programs whose budgets President Bush is proposing to gut in FY 2008. In particular, major questions have been raised about the magnitude and costs of radioactive wastes stemming from the GNEP program.

To help legislators and the American public bridge this information gap, the Institute for Policy Studies will release a rigorous study of GNEP on April 23rd. Directed by Robert Alvarez, Senior Policy Advisor to the U.S. Secretary of Energy from 1993 to 1999, the report concludes that the program is likely to squander billions in taxpayer dollars on an unproven reprocessing technology that will generate unprecedented and unmanageable amounts of highly radioactive wastes without plausible disposition paths.

The potentially deadly flaws documented in Alvarez’s study include:

- The amount of long-lived radioactivity disposed of into the environment at a reprocessing site could be thousands of times greater than from nuclear weapons production. Much smaller concentrations of similar wastes at the DOE’s Savannah River Site have been characterized by the National Academy of Sciences as representing "a long term safety concern."

- GNEP would allow large quantities of cesium 135—a radionuclide with a half life of 2.3 million years—to be disposed in the near surface and pose serious contamination problems for many thousands of years.

- More than four thousand shipments of spent nuclear reactor fuel will be transported on rails and highways through cities and farmlands to the reprocessing site, posing unprecedented emergency response and security challenges.

- Despite DOE’s claims that recycling of reactor spent fuel will solve the nuclear waste disposal problem, a small fraction is likely to be recycled. Uranium constitutes more than 95 percent of the materials in spent nuclear fuel by weight. But, it will require costly treatment for reuse in reactors – estimated in the billions of dollars. As a result, DOE’s plans include the landfill disposal of tens of thousands of tons of recovered uranium.

Alvarez’s study concludes that the Energy Department "lacks a credible plan for management and disposal of radioactive wastes stemming from the GNEP program, particularly regarding waste volumes, site specific impacts, regulatory requirements and life-cycle costs."

Or as Alvarez has put it more bluntly in conversation, "You can’t just park some of the most highly radioactive wastes in the world at a landfill and assume that by so doing you have kept them safely removed from humans for the next 2.3 million years."

Denise Hughes | EurekAlert!
Further information:
http://www.ips-dc.org/

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>