Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why GNEP can't jump to the future

24.04.2007
New study highlights flaws in President's nuclear proposal

Congress is now considering whether to approve or zero out the $405 million that President Bush is proposing to spend in fiscal year 2008 on the Global Nuclear Energy Partnership (GNEP)—a program aimed at rendering plutonium inert in nuclear weapons but still useful in nuclear power plants.

Nuclear experts at the National Academy of Sciences have long questioned the practicability of the technologies GNEP plans to employ. Currently, the Government Accounting Office is now reviewing the program. This, however, leaves legislators with an information gap as they struggle to decide whether to fully fund the plan, eliminate it altogether, or redirect some of its funding to the many successful energy programs whose budgets President Bush is proposing to gut in FY 2008. In particular, major questions have been raised about the magnitude and costs of radioactive wastes stemming from the GNEP program.

To help legislators and the American public bridge this information gap, the Institute for Policy Studies will release a rigorous study of GNEP on April 23rd. Directed by Robert Alvarez, Senior Policy Advisor to the U.S. Secretary of Energy from 1993 to 1999, the report concludes that the program is likely to squander billions in taxpayer dollars on an unproven reprocessing technology that will generate unprecedented and unmanageable amounts of highly radioactive wastes without plausible disposition paths.

The potentially deadly flaws documented in Alvarez’s study include:

- The amount of long-lived radioactivity disposed of into the environment at a reprocessing site could be thousands of times greater than from nuclear weapons production. Much smaller concentrations of similar wastes at the DOE’s Savannah River Site have been characterized by the National Academy of Sciences as representing "a long term safety concern."

- GNEP would allow large quantities of cesium 135—a radionuclide with a half life of 2.3 million years—to be disposed in the near surface and pose serious contamination problems for many thousands of years.

- More than four thousand shipments of spent nuclear reactor fuel will be transported on rails and highways through cities and farmlands to the reprocessing site, posing unprecedented emergency response and security challenges.

- Despite DOE’s claims that recycling of reactor spent fuel will solve the nuclear waste disposal problem, a small fraction is likely to be recycled. Uranium constitutes more than 95 percent of the materials in spent nuclear fuel by weight. But, it will require costly treatment for reuse in reactors – estimated in the billions of dollars. As a result, DOE’s plans include the landfill disposal of tens of thousands of tons of recovered uranium.

Alvarez’s study concludes that the Energy Department "lacks a credible plan for management and disposal of radioactive wastes stemming from the GNEP program, particularly regarding waste volumes, site specific impacts, regulatory requirements and life-cycle costs."

Or as Alvarez has put it more bluntly in conversation, "You can’t just park some of the most highly radioactive wastes in the world at a landfill and assume that by so doing you have kept them safely removed from humans for the next 2.3 million years."

Denise Hughes | EurekAlert!
Further information:
http://www.ips-dc.org/

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>