Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Wired for sound: How the brain senses visual illusions

In a study that could help reveal how illusions are produced in the brain's visual cortex, researchers at the UCSD School of Medicine have found new evidence of rapid integration of auditory and visual sensations in the brain.

Their findings, which provide new insight into neural mechanisms by which visual perception can be altered by concurrent auditory events, will be published online in the April 12 edition of the Journal of Neuroscience.

When subjects were shown a single flash of light interposed between two brief sounds, many subjects reported seeing two distinct flashes of light. Investigating the timing and location of the brain processes that underlie this illusory effect – the illusion of seeing two flashes in the presence of two auditory signals, when only one flash actually occurs – can reveal how information from different senses are integrated in the brain.

The study of 34 subjects was carried out in the laboratory of Steven A. Hillyard, Ph.D., UCSD professor of neurosciences. "This type of perceptual illusion has been described before," said first author Jyoti Mishra, graduate student in the Hillyard lab. "The surprising finding we made is that the illusion depends on a rapidly timed sequence of interactions between the auditory and visual cortical areas."

"This is part of a set of new findings by scientists in the field that show how integration of multiple sensations can happen much more rapidly than we thought before," said Mishra. "We show physiological evidence that visual and auditory stimulation might not be processed separately, then merged together, as previously assumed, but that an almost-simultaneous integration of the sensations may actually take place in the brain."

The UCSD scientists measured event-related potentials (ERPs), brain responses that are directly related to the perceptual experiences induced by sensory stimuli, using an electrophysiological or EEG recording procedure that measures electrical activity of the brain through the skull.

"In subjects who reported seeing a second flash, the ERP measurements showed a boost of activity within the visual cortex of the brain immediately after hearing the second sound," said Mishra, adding that the second sound amplified the brain activity stimulated by the first sound. Perception of the second illusory flash was also marked by a rapid enhancement of processing in the auditory cortex of the brain. By observing the auditory boost, the researchers could predict when subjects would report seeing the visual illusion of a second flash.

"Our results provide evidence that perception of the illusory second flash is based on a very rapid and dynamic interplay between the auditory and visual cortices of the brain – on a time scale less than one tenth the blink of an eye." Mishra said. Interestingly, the pattern was very different between individuals who did or didn't see the second flash, indicating that the brain's wiring and the strength of integration between the different sensory cortices may differ between individuals, or even vary over time. "It suggests that there are consistent differences in the neural connectivity that are possibly shaped during one's development and through experience," she said.

Next, the researchers plan to look at whether or not attention affects these illusory sensations. These studies could shed light on how people deprived of one sensation often compensate by developing another – for instance, blind people with a more acute sense of hearing.

Debra Kain | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

Gene therapy shows promise for treating Niemann-Pick disease type C1

27.10.2016 | Life Sciences

Solid progress in carbon capture

27.10.2016 | Power and Electrical Engineering

More VideoLinks >>>