Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study examines calorie restriction and glycemic load

10.04.2007
The first phase of a caloric restriction study in human subjects at the Jean Mayer US Department of Agriculture Human Nutrition Research Center on Aging (USDA HNRCA) at Tufts University found evidence suggesting that calorie-restricted diets differing substantially in glycemic load can result in comparable long-term weight loss.

The study, part of the multi-center Comprehensive Assessment of Long-term Effects of Restricting Intake of Energy (CALERIE) trial, funded by the National Institute on Aging, accounted for dietary factors that affect hunger and satiety, used laboratory techniques to measure adherence, and was the first of its kind to provide a complete set of meals and snacks to its participants. Recruitment is currently underway for participation in the second phase of the CALERIE study at Tufts, which will examine the relationship between calorie-restricted diets, aging, and age-related disease.

"Participants in our pilot study achieved and maintained comparable weight loss after one year, regardless of whether they were on a low-glycemic-load or a high-glycemic-load diet," says corresponding author Susan Roberts, PhD, director of the USDA HNRCA's Energy Metabolism Laboratory. "The goal was for both groups to restrict calories by 30 percent and, after one year, both groups had lost an average of 8 percent of their original body weight. We found that the two groups did not differ significantly in their average body fat loss, energy intake, metabolic rate, or reports of hunger and satiety."

The two study diets were carefully matched for factors known to influence food intake during weight-loss efforts, such as palatability, dietary variety, and fiber. "Because there was careful attention to factors that influence hunger and satiety, participants were generally satisfied on a calorie-restricted diet," says Roberts, who is also a professor at the Friedman School of Nutrition Science and Policy at Tufts.

Thirty-four overweight but otherwise healthy men and women were assigned randomly to a low-glycemic-load (LG) or high-glycemic-load (HG) diet. At six months, the LG group had lost an average of 10.4 percent body weight, while the HG group had lost an average of 9 percent body weight. By 12 months, participants in both the LG and HG groups had lost an average of 8 percent of their starting body weight.

"Unlike several other long-term studies, which have reported greater weight loss with low GL diets at six months but no differences by 12 months, our data show no significant short-term or long-term differences," notes Sai Das, PhD, scientist at the USDA HNRCA and first author of the study. "However, we did detect a greater tendency for weight and body-fat regain among LG participants. This finding suggests that reduced calorie intake may be harder to sustain on LG diets over time."

The LG diet contained 40 percent carbohydrate, 30 percent fat, and 30 percent protein; while the HG diet contained 60 percent carbohydrate, 20 percent fat, and 20 percent protein. A food's glycemic load is a relative measure of how much carbohydrate is in the food and how quickly that food is converted in the body to blood sugar. Examples of foods provided as part of the LG diet include bean and barley stew, low-fat cottage cheese, and pumpernickel bread. The HG diet included foods like bagels, candied sweet potatoes and shepherd's pie with mashed potatoes.

Both diets were designed to restrict calories by 30 percent, relative to a person's baseline energy requirements, while providing the recommended amounts of vitamins, minerals, and essential fatty acids. All participants attended weekly behavioral support groups and met individually with a dietitian.

To measure objectively actual dietary intakes, the researchers used a laboratory technique involving doubly labeled water. They determined that both groups ate more calories than study foods provided; at six months the HG group averaged a 16 percent calorie-restricted diet and the LG group averaged a 17 percent calorie-restricted diet. Although participants did consume additional calories, the degree of non-adherence was not significantly different between the LG and HG groups when measured at various points throughout the study.

"An important difference between our study and other weight-loss trials is that we did not rely on self-reported intakes," says Das, who is also an assistant professor at the Friedman School. "Underreporting of caloric intake can vary between 5 and 50 percent. By providing the study food for the first six months, we did not have to worry as much about lifestyle factors like shopping and cooking habits interfering with dietary change."

Roberts previously conducted a pilot study showing that a diet's overall glycemic load may be an important determinant of weight loss for people with high levels of insulin secretion, such as people with diabetes. "We have observed that for some groups, glycemic load may impact weight loss. However, in terms of calorie-restricted diets, we see little difference among diets of varying glycemic load when we account for factors that affect dietary adherence."

Siobhan Gallagher | EurekAlert!
Further information:
http://www.tufts.edu

More articles from Studies and Analyses:

nachricht Obstructing the ‘inner eye’
07.07.2017 | Friedrich-Schiller-Universität Jena

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>