Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study examines calorie restriction and glycemic load

10.04.2007
The first phase of a caloric restriction study in human subjects at the Jean Mayer US Department of Agriculture Human Nutrition Research Center on Aging (USDA HNRCA) at Tufts University found evidence suggesting that calorie-restricted diets differing substantially in glycemic load can result in comparable long-term weight loss.

The study, part of the multi-center Comprehensive Assessment of Long-term Effects of Restricting Intake of Energy (CALERIE) trial, funded by the National Institute on Aging, accounted for dietary factors that affect hunger and satiety, used laboratory techniques to measure adherence, and was the first of its kind to provide a complete set of meals and snacks to its participants. Recruitment is currently underway for participation in the second phase of the CALERIE study at Tufts, which will examine the relationship between calorie-restricted diets, aging, and age-related disease.

"Participants in our pilot study achieved and maintained comparable weight loss after one year, regardless of whether they were on a low-glycemic-load or a high-glycemic-load diet," says corresponding author Susan Roberts, PhD, director of the USDA HNRCA's Energy Metabolism Laboratory. "The goal was for both groups to restrict calories by 30 percent and, after one year, both groups had lost an average of 8 percent of their original body weight. We found that the two groups did not differ significantly in their average body fat loss, energy intake, metabolic rate, or reports of hunger and satiety."

The two study diets were carefully matched for factors known to influence food intake during weight-loss efforts, such as palatability, dietary variety, and fiber. "Because there was careful attention to factors that influence hunger and satiety, participants were generally satisfied on a calorie-restricted diet," says Roberts, who is also a professor at the Friedman School of Nutrition Science and Policy at Tufts.

Thirty-four overweight but otherwise healthy men and women were assigned randomly to a low-glycemic-load (LG) or high-glycemic-load (HG) diet. At six months, the LG group had lost an average of 10.4 percent body weight, while the HG group had lost an average of 9 percent body weight. By 12 months, participants in both the LG and HG groups had lost an average of 8 percent of their starting body weight.

"Unlike several other long-term studies, which have reported greater weight loss with low GL diets at six months but no differences by 12 months, our data show no significant short-term or long-term differences," notes Sai Das, PhD, scientist at the USDA HNRCA and first author of the study. "However, we did detect a greater tendency for weight and body-fat regain among LG participants. This finding suggests that reduced calorie intake may be harder to sustain on LG diets over time."

The LG diet contained 40 percent carbohydrate, 30 percent fat, and 30 percent protein; while the HG diet contained 60 percent carbohydrate, 20 percent fat, and 20 percent protein. A food's glycemic load is a relative measure of how much carbohydrate is in the food and how quickly that food is converted in the body to blood sugar. Examples of foods provided as part of the LG diet include bean and barley stew, low-fat cottage cheese, and pumpernickel bread. The HG diet included foods like bagels, candied sweet potatoes and shepherd's pie with mashed potatoes.

Both diets were designed to restrict calories by 30 percent, relative to a person's baseline energy requirements, while providing the recommended amounts of vitamins, minerals, and essential fatty acids. All participants attended weekly behavioral support groups and met individually with a dietitian.

To measure objectively actual dietary intakes, the researchers used a laboratory technique involving doubly labeled water. They determined that both groups ate more calories than study foods provided; at six months the HG group averaged a 16 percent calorie-restricted diet and the LG group averaged a 17 percent calorie-restricted diet. Although participants did consume additional calories, the degree of non-adherence was not significantly different between the LG and HG groups when measured at various points throughout the study.

"An important difference between our study and other weight-loss trials is that we did not rely on self-reported intakes," says Das, who is also an assistant professor at the Friedman School. "Underreporting of caloric intake can vary between 5 and 50 percent. By providing the study food for the first six months, we did not have to worry as much about lifestyle factors like shopping and cooking habits interfering with dietary change."

Roberts previously conducted a pilot study showing that a diet's overall glycemic load may be an important determinant of weight loss for people with high levels of insulin secretion, such as people with diabetes. "We have observed that for some groups, glycemic load may impact weight loss. However, in terms of calorie-restricted diets, we see little difference among diets of varying glycemic load when we account for factors that affect dietary adherence."

Siobhan Gallagher | EurekAlert!
Further information:
http://www.tufts.edu

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Positrons as a new tool for lithium ion battery research: Holes in the electrode

22.02.2017 | Power and Electrical Engineering

New insights into the information processing of motor neurons

22.02.2017 | Life Sciences

Healthy Hiking in Smart Socks

22.02.2017 | Innovative Products

VideoLinks
B2B-VideoLinks
More VideoLinks >>>