Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study shows isolation of stem cells may lead to a treatment for hearing loss

10.04.2007
Have you ever walked by someone listening to their i-Pod loud enough for you recognize the song? Studies have shown noise-induced hearing loss is going to become the next big epidemic affecting our younger generation though the effects won’t show until it is too late to treat.

In addition to loud noise, certain cancer drugs or genetic factors can cause hearing loss in humans due to loss or faulty development of the sensory ‘microphones’ (hair cells) inside the ear – the cochlea. Lost hair cells are not replaced and people exposed to these conditions face permanent hearing loss. Identification of the stem cells from the adult cochlea would be a major step forward to develop new therapeutic approaches to hearing loss.

Members of the National Center for Regenerative Medicine research team, Dr. Robert Miller and Dr. Kumar Alagramam, both of Case Western Reserve University School of Medicine, recently published research findings in Developmental Neuroscience which suggest new ways of treating hearing loss. These researchers have isolated “cochlear stem cells” located in the inner ear and already primed for development into ear-related tissue due to their proximity to the ear and expression of certain genes necessary for the development of hearing. “Previous work in our lab with young-adult mouse cochlear tissue showed expression of genes normally found in stem cells and neural progenitors. This led us to hypothesize that cochlea harbors stem cells and neural precursor cells.

Our work in collaboration with Miller’s lab supports our hypothesis” Dr. Alagramam said. They say that in early life, these precursor cells may be able to regenerate hair cells, but their capacity to do so becomes limited as the ear develops and ages. The team's research is a major step in devising a therapy to reverse permanent hearing loss because it may lead to the activation of cochlear stem cells in the inner ear to regenerate new hair cells. “Clearly we have miles to go before we reach our end goal, but the exciting part is now we can test compounds that could promote regeneration of hair cells from these precursor cells in vitro, we can study the genes expressed during the transition from stem cells to hair cells, and we can think of developing strategies for cell replacement, i.e. transplanting these cochlear stem cells into the adult cochlea to affect hair cell replacement in the mouse, by extension, in humans” remarked Dr. Alagramam.

In this paper, Drs. Miller and Alagramam offer further evidence for the existence of cochlear stem cells in the mouse cochlea by confirming the ability to form ‘stem cell’ spheres in culture and by characterizing these cells in terms of neural and hair cell development using a panel of stem cell development and hair cell markers. The formation of spheres from early postnatal cochlear tissues and their expression of a wide range of developmental markers unique to hair cells confirm the possibility that self-supporting hair cell precursors exist in or can be derived from the postnatal mammalian cochlea.

Currently there are no clinical treatments to repair these hair cells vital to normal hearing. In the United States, 30% of people over the age of 65 have a handicapping hearing loss and of those, one in 500 people become deaf before reaching adulthood. In most cases, the target is the highly specialized hair cells. Docked inside the spiral duct of the human cochlea are ~15,000 hair cells, which are highly specialized neuroepithelial cells that enable us to hear a violin or a whisper. These hair cells differ in length by minuscule amounts and are set in motion by specific frequencies of sound. We hear this sound because this motion induces the hair cell to release an electrical impulse which passes along the auditory nerve to the brain. If the sound is too loud, the hair cells are damaged and no longer send signals to the brain. Severely damaged hair cells do not repair themselves nor do they regenerate naturally.

While further research is necessary, the researchers believe these precursor cells have the potential to regenerate the damaged hair cells and restore normal hearing. The team has already begun animal studies to explore the use of cochlear stem cells in well-established hair cell ablation models and in deaf mouse mutants with predictable patterns of early hair cell loss. This line of research will evaluate the in vivo survival and differentiation of self-renewing cochlear cell populations and potentially lead to new therapies for the numerous individuals that are going to suffer from noise-induced hearing loss in the near future.

Susan Licate | EurekAlert!
Further information:
http://www.case.edu
http://www.ncrm.us

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>