Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scripps research scientists identify new regulatory mechanism for critical protein signaling domain

10.04.2007
Unexpected findings offer insight into T cell development, possible therapies for immune disorders

The study is being published in Science Express, an advanced online edition of the journal Science, on April 5. It will appear in the print version of Science later this spring.

In findings the authors called "unexpected and striking," the study found that a new regulating messenger IP4, a small soluble molecule, augments the binding of three different PH domain proteins to one of the most commonly recognized membrane lipids, PIP3. The study also showed that inhibiting production of IP4 can result in reduced protein binding to membranes and reduced activation of key signaling molecules in developing T cells, leading to a block of T cell maturation and to severe immunodeficiency in animal models.

"This study changes how we think about the T cell receptor signaling process and a well established general signaling mechanism, protein recruitment to membranes through PH domains," said Karsten Sauer, a Scripps Research scientist who led the study. "For the first time, we have clearly established a new way through which the PH domain can be positively regulated in vivo-IP4 augments the binding of PIP3 to these domains. In fact, it resembles PIP3. Until our study, the widely accepted idea was that recruitment of PIP3 binding PH domains to the membrane was primarily regulated by the supply and turnover of PIP3. The second completely new finding is that PH domain proteins can form aggregates through their PH domains. PH domain aggregation may enhance the membrane binding process."

Sauer suggests models for how IP4 might augment the binding of PIP3. In one, IP4 binds to a PH domain, changing its structure to one with a high affinity for IP4 and PIP3, a process commonly known as the "induced fit" model. In the second model, the PH domain pre-exists as an aggregate; IP4 binding to one subunit forces changes in the other subunit(s) so that they bind PIP3 with greater ease. This process is commonly known as an allosteric or cooperative mechanism.

Sauer offers a helpful analogy for the newly uncovered mechanism: "IP4 acts very like a clever engineer. If you were trying to dock your ship at a space station but found that the docking stations weren't fully compatible, the station would send over an engineer called IP4 and he would reconfigure your dock to fit the space station."

Repercussions for T Cell Development

Signaling from T cell receptors triggers the generation of PIP3 and IP4, Sauer explained, leading to the recruitment of proteins to the cell membrane from the cytosol, the internal part of the cell. This receptor signal is part of the mechanisms by which T cells, key players of the immune system, protect us against attack by pathogens such as viruses. However, defective T cell development can lead to a number of immune diseases including allergies like asthma and autoimmune diseases like rheumatoid arthritis, while severely reduced T cell development or function can lead to immunodeficiency diseases such as AIDS.

Using a mouse mutant lacking ItpkB, the enzyme that produces IP4, Sauer and his colleagues showed that without the enzyme, T cells could not develop to maturity.

Because T cell development is regulated by receptor signaling, Sauer said, if the T cell doesn't signal properly, it is normally killed through programmed cell death or other mechanisms. In immature T cells-called double positive cells-if the signal is correct, the cells undergo positive selection in the thymus and are allowed to develop into mature CD4 or CD8 single positive (SP) T cells. Damaged or nonfunctional cells are eliminated.

"IP4 is generated after T cell receptor stimulation," he said. "We found that if IP4 cannot be made due to lack of ItpkB, important signaling molecules including the protein tyrosine kinase Itk can not be properly recruited to the cell membrane. Itk is a key activator of another enzyme, PLC g1, in T- cells. PLC g1 is important for signaling in many cells, because it generates the secondary messenger molecules IP3 and DAG (diacylglycerol). We found that ItpkB deficient double positive cells have reduced PLCg1 activity and cannot make normal amounts of DAG. Without the IP4 or DAG messengers, which are essential for positive selection of T cells, these ItpkB-deficient T cells cannot develop into mature, functional cells."

Positive selection of T cells is disrupted by this lack of IP4 and DAG in the mutant mice, the study noted. Quite remarkably, the authors could rescue several aspects of positive selection by treating ItpkB deficient cells with a DAG analog, PMA. DAG is well known for helping to mediate T cell receptor signaling by activating the Ras/Erk pathway, a key signal pathway whose misregulation is often involved in cancer. It is still too early to tell if IP4 plays a broader role in Ras regulation in other cells, Sauer said.

"This is something we stumbled into-the possibility of regulating the Ras pathway with IP4 at the level of DAG production through PLCg1," he said. "In the immature, double positive T cells, this circuitry is essential for positive selection. If you prevent IP4 production, you can never get positive selection-unless you provide a DAG analog like PMA-and that is a very provocative discovery."

Keith McKeown | EurekAlert!
Further information:
http://www.scripps.edu

More articles from Studies and Analyses:

nachricht WAKE-UP provides new treatment option for stroke patients | International study led by UKE
17.05.2018 | Universitätsklinikum Hamburg-Eppendorf

nachricht First form of therapy for childhood dementia CLN2 developed
25.04.2018 | Universitätsklinikum Hamburg-Eppendorf

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Designer cells: artificial enzyme can activate a gene switch

22.05.2018 | Life Sciences

PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target

22.05.2018 | Earth Sciences

Achema 2018: New camera system monitors distillation and helps save energy

22.05.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>