Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scripps research scientists identify new regulatory mechanism for critical protein signaling domain

10.04.2007
Unexpected findings offer insight into T cell development, possible therapies for immune disorders

The study is being published in Science Express, an advanced online edition of the journal Science, on April 5. It will appear in the print version of Science later this spring.

In findings the authors called "unexpected and striking," the study found that a new regulating messenger IP4, a small soluble molecule, augments the binding of three different PH domain proteins to one of the most commonly recognized membrane lipids, PIP3. The study also showed that inhibiting production of IP4 can result in reduced protein binding to membranes and reduced activation of key signaling molecules in developing T cells, leading to a block of T cell maturation and to severe immunodeficiency in animal models.

"This study changes how we think about the T cell receptor signaling process and a well established general signaling mechanism, protein recruitment to membranes through PH domains," said Karsten Sauer, a Scripps Research scientist who led the study. "For the first time, we have clearly established a new way through which the PH domain can be positively regulated in vivo-IP4 augments the binding of PIP3 to these domains. In fact, it resembles PIP3. Until our study, the widely accepted idea was that recruitment of PIP3 binding PH domains to the membrane was primarily regulated by the supply and turnover of PIP3. The second completely new finding is that PH domain proteins can form aggregates through their PH domains. PH domain aggregation may enhance the membrane binding process."

Sauer suggests models for how IP4 might augment the binding of PIP3. In one, IP4 binds to a PH domain, changing its structure to one with a high affinity for IP4 and PIP3, a process commonly known as the "induced fit" model. In the second model, the PH domain pre-exists as an aggregate; IP4 binding to one subunit forces changes in the other subunit(s) so that they bind PIP3 with greater ease. This process is commonly known as an allosteric or cooperative mechanism.

Sauer offers a helpful analogy for the newly uncovered mechanism: "IP4 acts very like a clever engineer. If you were trying to dock your ship at a space station but found that the docking stations weren't fully compatible, the station would send over an engineer called IP4 and he would reconfigure your dock to fit the space station."

Repercussions for T Cell Development

Signaling from T cell receptors triggers the generation of PIP3 and IP4, Sauer explained, leading to the recruitment of proteins to the cell membrane from the cytosol, the internal part of the cell. This receptor signal is part of the mechanisms by which T cells, key players of the immune system, protect us against attack by pathogens such as viruses. However, defective T cell development can lead to a number of immune diseases including allergies like asthma and autoimmune diseases like rheumatoid arthritis, while severely reduced T cell development or function can lead to immunodeficiency diseases such as AIDS.

Using a mouse mutant lacking ItpkB, the enzyme that produces IP4, Sauer and his colleagues showed that without the enzyme, T cells could not develop to maturity.

Because T cell development is regulated by receptor signaling, Sauer said, if the T cell doesn't signal properly, it is normally killed through programmed cell death or other mechanisms. In immature T cells-called double positive cells-if the signal is correct, the cells undergo positive selection in the thymus and are allowed to develop into mature CD4 or CD8 single positive (SP) T cells. Damaged or nonfunctional cells are eliminated.

"IP4 is generated after T cell receptor stimulation," he said. "We found that if IP4 cannot be made due to lack of ItpkB, important signaling molecules including the protein tyrosine kinase Itk can not be properly recruited to the cell membrane. Itk is a key activator of another enzyme, PLC g1, in T- cells. PLC g1 is important for signaling in many cells, because it generates the secondary messenger molecules IP3 and DAG (diacylglycerol). We found that ItpkB deficient double positive cells have reduced PLCg1 activity and cannot make normal amounts of DAG. Without the IP4 or DAG messengers, which are essential for positive selection of T cells, these ItpkB-deficient T cells cannot develop into mature, functional cells."

Positive selection of T cells is disrupted by this lack of IP4 and DAG in the mutant mice, the study noted. Quite remarkably, the authors could rescue several aspects of positive selection by treating ItpkB deficient cells with a DAG analog, PMA. DAG is well known for helping to mediate T cell receptor signaling by activating the Ras/Erk pathway, a key signal pathway whose misregulation is often involved in cancer. It is still too early to tell if IP4 plays a broader role in Ras regulation in other cells, Sauer said.

"This is something we stumbled into-the possibility of regulating the Ras pathway with IP4 at the level of DAG production through PLCg1," he said. "In the immature, double positive T cells, this circuitry is essential for positive selection. If you prevent IP4 production, you can never get positive selection-unless you provide a DAG analog like PMA-and that is a very provocative discovery."

Keith McKeown | EurekAlert!
Further information:
http://www.scripps.edu

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>