Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MIT model helps researchers 'see' brain development -- Work could facilitate early detection of autism

10.04.2007
Large mammals--humans, monkeys, and even cats--have brains with a somewhat mysterious feature: The outermost layer has a folded surface. Understanding the functional significance of these folds is one of the big open questions in neuroscience.

Now a team led by MIT, Massachusetts General Hospital and Harvard Medical School researchers has developed a tool that could aid such studies by helping researchers "see" how those folds develop and decay in the cerebral cortex.

By applying computer graphics techniques to brain images collected using magnetic resonance (MR) imaging, they have created a set of tools for tracking and measuring these folds over time. Their resulting model of cortical development may serve as a biomarker, or biological indicator, for early diagnosis of neurological disorders such as autism.

The researchers describe their model and analysis in the April issue of IEEE Transactions on Medical Imaging.

Peng Yu, a graduate student in the Harvard-MIT Division of Health Sciences and Technology (HST), is first author on the paper. The work was led by co-author Bruce Fischl, associate professor of radiology at Harvard Medical School, research affiliate with the MIT Computer Science and Artificial Intelligence Laboratory (CSAIL) and HST, and director of the computational core at the HST Martinos Center for Biomedical Imaging at Massachusetts General Hospital (MGH).

The team started with a collection of MR images from 11 developing brains, provided by Ellen Grant, chief of pediatric radiology at MGH and the Martinos Center. Of the subjects scanned, eight were newborn, mostly premature babies ranging from about 30 to 40 weeks of gestational age, and three were from children aged two, three and seven years. Grant scanned these infants and children to assess possible brain injury and found no neural defects. Later, she also consulted with Fischl's team to ensure that their analyses made sense clinically.

"We can't open the brain and see by eye, but the cool thing we can do now is see through the MR machine," a technology that is much safer than earlier techniques such as X-ray imaging, said Yu.

The first step in analyzing these images is to align their common anatomical structures, such as the "central sulcus," a fold that separates the motor cortex from the somatosensory cortex. Yu applied a technique developed by Fischl to perform this alignment.

The second step involves modeling the folds of the brain mathematically in a way that allows the researchers to analyze their changes over time and space.

The original brain scan is then represented computationally with points. Charting each baby's brain requires about 130,000 points per hemisphere. Yu decomposed these points into a representation using just 42 points that shows only the coarsest folds. By adding more points, she created increasingly finer-grained domains of smaller, higher-resolution folds.

Finally, Yu modeled biological growth using a technique recommended by Grant that allowed her to identify the age at which each type of fold, coarse or fine, developed, and how quickly.

She found that the coarse folds, equivalent to the largest folds in a crumpled piece of paper, develop earlier and more slowly than fine-grained folds.

In addition to providing insights into cortical development, the team is now comparing the images to those being collected from patients with autism. "We now have some idea of what normal development looks like. The next step is to see if we can detect abnormal development in diseases like autism by looking at folding differences," said Fischl. This tool may also be used to shed light on other neurological diseases such as schizophrenia and Alzheimer's disease.

In addition to Yu, Grant and Fischl, co-authors on the paper are postdoctoral associate Yuan Qi and Assistant Professor Polina Golland of CSAIL (Golland also holds an appointment in MIT's Department of Electrical Engineering and Computer Science); Xiao Han of CMS Inc.; Florent Segonne of Certis Laboratory; Rudolph Pienaar, Evelina Busa, Jenni Pacheco and Nikos Makris of the Martinos Center; and Randy L. Buckner of Harvard University and the Martinos Center.

The research was supported by the National Center for Research Resources, the National Institutes of Health, the Washington University Alzheimer's Disease Research Center, and the Mental Illness and Neuroscience Discovery (MIND) Institute. It is part of the National Alliance for Medical Image Computing, funded by the National Institutes of Health.

Elizabeth A. Thomson | MIT News Office
Further information:
http://www.mit.edu

More articles from Studies and Analyses:

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

nachricht Urbanization to convert 300,000 km2 of prime croplands
27.12.2016 | Mercator Research Institute on Global Commons and Climate Change (MCC) gGmbH

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>