Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Penn study points to new direction for pancreas cell regeneration

05.04.2007
Implications for diabetes, other pancreatic disorders

Replacing faulty or missing cells with new insulin-making cells has been the object of diabetes research for the last decade. Past studies in tissue culture have suggested that one type of pancreas cell could be coaxed to transform into insulin-producing islet cells.

Now, researchers at the University of Pennsylvania School of Medicine have demonstrated that these pancreatic acinar cells do not become insulin-producing cells in an animal model. However, they did show that injured pancreatic cells readily regenerate back into healthy acinar cells, which has implications for treating cancer and inflammation of the pancreas. This study appears in the April issue of the Journal of Clinical Investigation. The research also holds promise for new techniques for pancreas cell manipulation.

The pancreas is made up of two compartments with different functions: the islet compartment of insulin-producing beta cells and the much larger exocrine compartment composed of duct cells and acinar cells that make and deliver enzymes to the intestine for digestion. Diabetes is caused by the failure of the beta cells to make insulin, whereas pancreatic cancer usually originates from the exocrine compartment. Under certain conditions in tissue culture, acinar cells can synthesize insulin as well as amylase, a digestion enzyme.

"These findings have the potential to change the emphasis in diabetic research as far as regenerating the pancreas is concerned," says lead author Doris Stoffers, MD, PhD, Assistant Professor of Medicine.

Evidence from Stoffers' group and other groups is pointing to the beta cell itself as the most promising source for generating new beta cells. The focus of research is now shifting toward the direct stimulation of islet cell growth in live animals. In contrast, once acinar cells are removed from the organism and placed into culture, they may have greater potential to change into other cell types, including beta cells. As a result, Stoffers' animal model and technical approach is currently being used by other groups in the United States, Europe, and China to determine conditions under which acinar cells can take on the features of duct cells and beta cells.

The Penn team engineered mice with a special marker that permanently and selectively labels only pancreatic acinar cells. The mice were then subjected to pancreatic injury by chemicals or surgery. The pancreas was allowed to heal or regenerate itself, and the specific acinar cell marker was followed microscopically in thin slices of pancreatic tissue. "It is very clear that the acinar and islet compartments remain separate during regeneration in a live animal," says Stoffers.

"Although our work shows that acinar cells do not contribute to the insulin-producing compartment of the pancreas in an animal model, it is possible that other strategies might be successful in generating the islet cells," says Stoffers. Ongoing research is examining whether acinar cells from the mice used in this study can be induced to make insulin in tissue culture. "The hope is that these acinar cells would continue to make insulin after being transplanted back into the mouse," says Stoffers.

Karen Kreeger | EurekAlert!
Further information:
http://www.uphs.upenn.edu
http://www.pennhealth.com/news

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>