Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Penn study points to new direction for pancreas cell regeneration

05.04.2007
Implications for diabetes, other pancreatic disorders

Replacing faulty or missing cells with new insulin-making cells has been the object of diabetes research for the last decade. Past studies in tissue culture have suggested that one type of pancreas cell could be coaxed to transform into insulin-producing islet cells.

Now, researchers at the University of Pennsylvania School of Medicine have demonstrated that these pancreatic acinar cells do not become insulin-producing cells in an animal model. However, they did show that injured pancreatic cells readily regenerate back into healthy acinar cells, which has implications for treating cancer and inflammation of the pancreas. This study appears in the April issue of the Journal of Clinical Investigation. The research also holds promise for new techniques for pancreas cell manipulation.

The pancreas is made up of two compartments with different functions: the islet compartment of insulin-producing beta cells and the much larger exocrine compartment composed of duct cells and acinar cells that make and deliver enzymes to the intestine for digestion. Diabetes is caused by the failure of the beta cells to make insulin, whereas pancreatic cancer usually originates from the exocrine compartment. Under certain conditions in tissue culture, acinar cells can synthesize insulin as well as amylase, a digestion enzyme.

"These findings have the potential to change the emphasis in diabetic research as far as regenerating the pancreas is concerned," says lead author Doris Stoffers, MD, PhD, Assistant Professor of Medicine.

Evidence from Stoffers' group and other groups is pointing to the beta cell itself as the most promising source for generating new beta cells. The focus of research is now shifting toward the direct stimulation of islet cell growth in live animals. In contrast, once acinar cells are removed from the organism and placed into culture, they may have greater potential to change into other cell types, including beta cells. As a result, Stoffers' animal model and technical approach is currently being used by other groups in the United States, Europe, and China to determine conditions under which acinar cells can take on the features of duct cells and beta cells.

The Penn team engineered mice with a special marker that permanently and selectively labels only pancreatic acinar cells. The mice were then subjected to pancreatic injury by chemicals or surgery. The pancreas was allowed to heal or regenerate itself, and the specific acinar cell marker was followed microscopically in thin slices of pancreatic tissue. "It is very clear that the acinar and islet compartments remain separate during regeneration in a live animal," says Stoffers.

"Although our work shows that acinar cells do not contribute to the insulin-producing compartment of the pancreas in an animal model, it is possible that other strategies might be successful in generating the islet cells," says Stoffers. Ongoing research is examining whether acinar cells from the mice used in this study can be induced to make insulin in tissue culture. "The hope is that these acinar cells would continue to make insulin after being transplanted back into the mouse," says Stoffers.

Karen Kreeger | EurekAlert!
Further information:
http://www.uphs.upenn.edu
http://www.pennhealth.com/news

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>