Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why the Rich Get Richer

04.04.2007
A new theory shows how wealth, in different forms, can stick to some but not to others. The findings have implications ranging from the design of the Internet to economics.

Real-world data -- whether distributions of wealth, size of earthquakes or number of connections on a computer network -- often follow power-law distributions rather than the familiar bell-shaped curve. In a power-law distribution, large events are reasonably common compared to smaller events.

Networks often show power laws. They can be caused by the "rich get richer" effect, also known as "preferential attachment," where nodes gain new connections in proportion to how many they already have. That means some nodes end up with many more connections than others. The phenomenon is well known, but had been assumed to be just a fundamental property of networks.

Raissa D'Souza, an assistant professor at the Department of Mechanical and Aeronautical Engineering and the Center for Computational Science and Engineering at UC Davis, together with colleagues at Microsoft Research in Redmond, Wash., UCLA and Cornell University, looked at how "preferential attachment" can arise in networks.

"'The rich get richer' makes sense for wealth, but why would it happen for Internet routers?" she said.

D'Souza and colleagues found that they could make tradeoffs between the network distance between nodes and the number of connections between them. By tweaking the conditions, they could make preferential attachment -- a power-law distribution of the number of connections -- stronger or weaker.

These tradeoffs in networks are an underlying principle behind preferential attachment, D'Souza said. The general framework could be extended to all kinds of different networks, in biology, engineering, computer science or social sciences.

"It's exciting because it shows the origins of something that we had assumed as axiomatic," D'Souza said.

The other authors on the study, which is published online in the journal Proceedings of the National Academy of Sciences, are Christian Borgs and Jennifer T. Chayes at Microsoft Research, Noam Berger at UCLA and Robert D. Keinberg at Cornell University. A figure from the study will also be used for the cover art of the April 10 print issue of the journal.

Andy Fell | EurekAlert!
Further information:
http://www.ucdavis.edu

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>