Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers help find ‘master switch’ in plant communication

04.04.2007
Scientists have puzzled for years in understanding how plants pass signals of stress, due to lack of water or salinity, from chloroplast to nuclei. They know that chloroplasts -- the cellular organelles that give plants their green color -- have at least three different signals that can indicate a plant is under stress.

Given the challenges the environment will be facing over the coming decades through global warming, this puzzle piece has become more pressing for plant scientists, who hope that understanding the stress responses of plants will, in time, lead to new generations of plants that are, among other things, more drought- and stress-tolerant.

That is why a study that appeared this week in the internationally recognized journal, “Science,” is considered an important step forward in the understanding of how chloroplasts communicate with a cell’s nucleus when stresses such as drought, heat, salinity or light become too great on the organism.

A research team that includes Shai Koussevitzky, a research associate in the University’s College of Agriculture, Biotechnology and Natural Resources, as well as Ron Mittler, an associate professor of biochemistry and molecular biology, has determined that multiple distress signals in plants converge on a single pathway, which then channels the information to the nucleus. The study was part of a collaborative effort led by Joanne Chory, professor and director of the Plant Biology Laboratory at the Salk Institute for Biological Studies in La Jolla, Calif., and investigator with the Howard Hughes Medical Institute.

Koussevitzky, looking at the end of the signaling pathway, found the corresponding binding factor known that ABI4, a known plant transcription factor. It prevents light-induced regulatory factors from activating gene expression. Additional work in the project had determined that the chloroplast-localized, nuclear-encoded protein GUN1 is required for integrating multiple stress-derived signals within the chloroplast. This work was conducted by the first co-author of the article, Ajit Nott, who was a research associate in Dr. Chory’s lab.

Many of the nuclear genes that encode chloroplast proteins are regulated by a “master switch” in response to environmental conditions. This “master switch,” like a binary computer, can activate or de-activate certain sets of genes based on stress signaling processes.

“One of our suggestions in the paper is that ABI4 seems like a prime candidate to be the ‘master switch,’” Koussevitzky said. “ABI4 binds to a newly identified sequence motif, and by doing so prevents light-induced regulatory factors from activating gene expression. It has a role in so many signaling processes in the plant, it might actually be the ‘master switch’ that researchers have been looking for.”

The discoveries are critical to future research efforts in designing new generations of plants, Mittler said.

“A lot of things that occur in the chloroplast are important for production, for growth, for response to the environment,” he said. “So this is a very basic mechanism of communication between the chloroplast and the nucleus. It had been previously suggested that the elements in this process go through multiple pathways. This work shows that the elements actually go through this one particular route.

“Now we are in much better shape in solving the question of generating plants that can use marginal water, or marginal soil, and do so in a way that the plant won’t completely suppress its normal metabolisms and activate all of its stress metabolisms when faced with a lot of stress. If you want to generate a plant that is more tolerant, you need to deal with these two things.”

Added Koussevitzky: “We’re trying to put the signaling pathways in the context of the plant’s stress response. It will take a little more tweaking, but at least knowing that it is going through a certain particular pathway will enable researchers to design what the targets should be downstream from these pathways.”

Work for the project was supported by a grant from the Department of Energy, the Howard Hughes Medical Institute, EMBO long term and Howard Hughes Medical Institute fellowships.

John Trent | EurekAlert!
Further information:
http://www.unr.edu

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>