Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

It's only a game of chance

29.03.2007
Weizmann Institute research challenges a leading theory of neural coding

The validity of a leading theory that has held a glimmer of hope for unraveling the intricacies of the brain has just been called into question. Dr. Ilan Lampl of the Weizmann Institute of Science's Neurobiology Department has produced convincing evidence to the contrary. His findings recently appeared in the journal Neuron.

Cells in the central nervous system tend to communicate with each other via a wave of electrical signals that travel along neurons. The question is: How does the brain translate this information to allow us to perceive and understand the world before us?

It is widely believed that these electrical signals generate spiked patterns that encode different types of cognitive information. According to the theory, the brain is able to discriminate between, say, a chair and a table because each of them will generate a distinct sequence of patterns within the neural system that the brain then interprets. Upon repeated presentation of that object, its pattern is reproduced in a precise and controlled manner. Previous experiments had demonstrated repeating patterns lasting up to one second in duration.

But when Lampl and his colleagues recorded the activity of neurons in the brain region known as the cortex in anaesthetized rats and analyzed the data, they found no difference in the number of patterns produced or the time it takes for various patterns to repeat themselves, compared with data that was randomized. They therefore concluded that the patterns observed could not be due to the deterministically controlled mechanisms posited in the theory, but occur purely by chance.

The consequence of this research is likely to contribute significantly to the ongoing debate on neuronal coding. Lampl: "Since the 1980s, many neuroscientists believed they possessed the key for finally beginning to understand the workings of the brain. But we have provided strong evidence to suggest that the brain may not encode information using precise patterns of activity."

Jennifer Manning | EurekAlert!
Further information:
http://www.acwis.org

More articles from Studies and Analyses:

nachricht Physics of bubbles could explain language patterns
25.07.2017 | University of Portsmouth

nachricht Obstructing the ‘inner eye’
07.07.2017 | Friedrich-Schiller-Universität Jena

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

New 3-D imaging reveals how human cell nucleus organizes DNA and chromatin of its genome

28.07.2017 | Health and Medicine

Heavy metals in water meet their match

28.07.2017 | Power and Electrical Engineering

Oestrogen regulates pathological changes of bones via bone lining cells

28.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>