Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Global warming forecasts creation, loss of climate zones

27.03.2007
A new global warming study predicts that many current climate zones will vanish entirely by the year 2100, replaced by climates unknown in today's world.

Global climate models for the next century forecast the complete disappearance of several existing climates currently found in tropical highlands and regions near the poles, while large swaths of the tropics and subtropics may develop new climates unlike anything seen today. Driven by worldwide greenhouse gas emissions, the climate modeling study uses average summer and winter temperatures and precipitation levels to map the differences between climate zones today and in the year 2100 and anticipates large climate changes worldwide.

The work, by researchers at the University of Wisconsin-Madison and the University of Wyoming, appears online in the Proceedings of the National Academy of Sciences during the week of March 26.

As world leaders and scientists push to develop sound strategies to understand and cope with global changes, predictive studies like this one reveal both the importance and difficulty of such a task. Primary author and UW-Madison geographer Jack Williams likens today's environmental analysts to 15th-century European mapmakers confronted with the New World, struggling to chart unknown territory.

"We want to identify the regions of the world where climate change will result in climates unlike any today," Williams says. "These are the areas beyond our map."

The most severely affected parts of the world span both heavily populated regions, including the southeastern United States, southeastern Asia and parts of Africa, and known hotspots of biodiversity, such as the Amazonian rainforest and African and South American mountain ranges. The changes predicted by the new study anticipate dramatic ecological shifts, with unknown but probably extensive effects on large segments of the Earth's population.

"All policy and management strategies are based on current conditions," Williams says, adding that regions with the largest changes are where these strategies and models are most likely to fail. "How do you make predictions for these areas of the unknown?"

Using models that translate carbon dioxide emission levels into climate change, Williams and his colleagues foresee the appearance of novel climate zones on up to 39 percent of the world's land surface area by 2100, if current rates of carbon dioxide and other greenhouse gas emissions continue. Under the same conditions, the models predict the global disappearance of up to 48 percent of current land climates. Even if emission rates slow due to mitigation strategies, the models predict both climate loss and formation, each on up to 20 percent of world land area.

The underlying effect is clear, Williams says, noting, "More carbon dioxide in the air means more risk of entirely new climates or climates disappearing."

In general, the models show that existing climate zones will shift toward higher latitudes and higher elevations, squeezing out the climates at the extremes - tropical mountaintops and the poles - and leaving room for unfamiliar climes around the equator.

"This work helps highlight the significance of changes in the tropics," complementing the extensive attention already focused on the Arctic, says co-author John Kutzbach, professor of atmospheric and oceanic sciences at UW-Madison. "There has been so much emphasis on high latitudes because the absolute temperature changes are larger."

However, Kutzbach explains, normal seasonal fluctuations in temperature and rainfall are smaller in the tropics, and even "small absolute changes may be large relative to normal variability."

The patterns of change foreshadow significant impacts on ecosystems and conservation. "There is a close correspondence between disappearing climates and areas of biodiversity," says Williams, which could increase risk of extinction in the affected areas.

Physical restrictions on species may also amplify the effects of local climate changes. The more relevant question, Williams says, becomes not just whether a given climate still exists, but "will a species be able to keep up with its climatic zone? Most species can't migrate around the world."

For the researchers, one of the most poignant aspects of the work is in what it doesn't tell them - the uncertainty. At this point, Williams says, "we don't know which bad things will happen or which good things will happen - we just don't know. We are in for some ecological surprises."

Jack Williams | EurekAlert!
Further information:
http://www.wisc.edu

More articles from Studies and Analyses:

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

nachricht Urbanization to convert 300,000 km2 of prime croplands
27.12.2016 | Mercator Research Institute on Global Commons and Climate Change (MCC) gGmbH

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>