Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Global warming forecasts creation, loss of climate zones

A new global warming study predicts that many current climate zones will vanish entirely by the year 2100, replaced by climates unknown in today's world.

Global climate models for the next century forecast the complete disappearance of several existing climates currently found in tropical highlands and regions near the poles, while large swaths of the tropics and subtropics may develop new climates unlike anything seen today. Driven by worldwide greenhouse gas emissions, the climate modeling study uses average summer and winter temperatures and precipitation levels to map the differences between climate zones today and in the year 2100 and anticipates large climate changes worldwide.

The work, by researchers at the University of Wisconsin-Madison and the University of Wyoming, appears online in the Proceedings of the National Academy of Sciences during the week of March 26.

As world leaders and scientists push to develop sound strategies to understand and cope with global changes, predictive studies like this one reveal both the importance and difficulty of such a task. Primary author and UW-Madison geographer Jack Williams likens today's environmental analysts to 15th-century European mapmakers confronted with the New World, struggling to chart unknown territory.

"We want to identify the regions of the world where climate change will result in climates unlike any today," Williams says. "These are the areas beyond our map."

The most severely affected parts of the world span both heavily populated regions, including the southeastern United States, southeastern Asia and parts of Africa, and known hotspots of biodiversity, such as the Amazonian rainforest and African and South American mountain ranges. The changes predicted by the new study anticipate dramatic ecological shifts, with unknown but probably extensive effects on large segments of the Earth's population.

"All policy and management strategies are based on current conditions," Williams says, adding that regions with the largest changes are where these strategies and models are most likely to fail. "How do you make predictions for these areas of the unknown?"

Using models that translate carbon dioxide emission levels into climate change, Williams and his colleagues foresee the appearance of novel climate zones on up to 39 percent of the world's land surface area by 2100, if current rates of carbon dioxide and other greenhouse gas emissions continue. Under the same conditions, the models predict the global disappearance of up to 48 percent of current land climates. Even if emission rates slow due to mitigation strategies, the models predict both climate loss and formation, each on up to 20 percent of world land area.

The underlying effect is clear, Williams says, noting, "More carbon dioxide in the air means more risk of entirely new climates or climates disappearing."

In general, the models show that existing climate zones will shift toward higher latitudes and higher elevations, squeezing out the climates at the extremes - tropical mountaintops and the poles - and leaving room for unfamiliar climes around the equator.

"This work helps highlight the significance of changes in the tropics," complementing the extensive attention already focused on the Arctic, says co-author John Kutzbach, professor of atmospheric and oceanic sciences at UW-Madison. "There has been so much emphasis on high latitudes because the absolute temperature changes are larger."

However, Kutzbach explains, normal seasonal fluctuations in temperature and rainfall are smaller in the tropics, and even "small absolute changes may be large relative to normal variability."

The patterns of change foreshadow significant impacts on ecosystems and conservation. "There is a close correspondence between disappearing climates and areas of biodiversity," says Williams, which could increase risk of extinction in the affected areas.

Physical restrictions on species may also amplify the effects of local climate changes. The more relevant question, Williams says, becomes not just whether a given climate still exists, but "will a species be able to keep up with its climatic zone? Most species can't migrate around the world."

For the researchers, one of the most poignant aspects of the work is in what it doesn't tell them - the uncertainty. At this point, Williams says, "we don't know which bad things will happen or which good things will happen - we just don't know. We are in for some ecological surprises."

Jack Williams | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>