Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

LSU professor uncovers prehistoric hurricane activity

21.03.2007
Chances of Category 4 or 5 hurricanes hitting Gulf location are .03 percent annually

Hurricanes Katrina and Rita focused the international spotlight on the vulnerability of the U.S. coastline. Fears that a "super-hurricane" could make a direct hit on a major city and cause even more staggering losses of life, land and economy triggered an outpouring of studies directed at every facet of this ferocious weather phenomenon. Now, an LSU professor takes us one step closer to predicting the future by drilling holes into the past.

Kam-biu Liu, George William Barineau III Professor in LSU's Department of Oceanography and Coastal Sciences, is the pioneer of a relatively new field of study called paleotempestology, or the study of prehistoric hurricanes. Liu, a long-time resident of Louisiana, became even more interested in the subject during the aftermath of Hurricane Katrina, when a national debate was sparked concerning hurricane intensity patterns and cycles.

"People were discussing the probability of a Category 5 hurricane making direct impact on New Orleans," said Liu. "That's tricky, because it's never actually happened in history. Even Katrina, though still extremely powerful, was only a Category 3 storm at landfall."

Currently, experts tend to agree that Atlantic hurricane activity fluctuates in cycles of approximately 20-30 years, alternating periods of high activity with periods of relative calm. But records of such events have only been kept for the last 150 years or so. What would happen, Liu wondered, if you looked back thousands of years? Would larger cycles present themselves?

How does a scientist study storms that happened during prehistoric times? "Basically, we worked under the assumption that the storm surge from these catastrophic hurricanes would have the capability to drive sand over beach barriers and into coastal lakes," said Liu. "This is called an overwash event. We believed that pulling sediment cores from coastal lakes and analyzing the sand layers might give us the information we needed." The same methodology can be used to find overwash sand layers in coastal marshes. Using radiocarbon analysis and other dating techniques, Liu and his research team worked to develop a chronology of prehistoric storms in order to analyze any emerging patterns or cycles.

This methodology has proven successful for the group. In an article printed in the March issue of American Scientist, the magazine of Sigma Xi, the Scientific Research Society, Liu states that evidence from the Gulf Coast drill sites shows that hurricanes of catastrophic magnitude directly hit each location only approximately 10 – 12 times in the past 3,800 years. "That means the chances of any particular Gulf location being hit by a Category 4 or Category 5 hurricane in any given year is around 0.3 percent," said Liu.

After spending more that 15 years studying dozens of lakes and marshes along the U.S. Gulf and Atlantic Coasts, Liu and his students are moving on to a more tropical location. Liu was recently awarded more than $690,000 from the Inter-American Institute for Global Change Research, or IAI, for his new project titled "Paleotempestology of the Caribbean Region," which is slated to run for five years. He serves as the principal investigator for this international and multi-disciplinary project, which involves 12 other co-investigators from four different countries, including another contributor from LSU, Nina Lam, a professor in the Department of Environmental Studies.

Institutions participating in the study include:

the Woods Hole Oceanographic Institution,

Brown University,

Boston College,

the University of Tennessee,

the University of Toronto,

the Memorial University of Newfoundland,

the University of Costa Rica,

the Instituto Mexicano de Tecnologia del Agua, or IMTA, in Mexico.
Liu's Caribbean research has attracted funding not only from the IAI but also from the U.S. National Science Foundation. He and his students have already engaged in three separate expeditions to the Caribbean, stopping in Anguilla, Barbuda and the Bahamas, in the summer and fall of 2006 to core coastal salt ponds in order to gather paleohurricane evidence for analysis. He has recently returned from a coring trip to the Mosquito Coast of Honduras, where he and his co-workers studied how Hurricane Mitch, a catastrophic hurricane that killed more than 12,000 people in Honduras and Nicaragua in 1998, impacted the local communities and environment. His students have also conducted coring fieldwork in Barbados, Nicaragua and Belize during the past year. With many future trips to the Caribbean in the planning stages, they hope to reproduce a prehistoric hurricane analysis as successful as their Gulf Coast study.

Kam-biu Liu | EurekAlert!
Further information:
http://www.lsu.edu
http://www.sce.lsu.edu/faculty/liu.htm

More articles from Studies and Analyses:

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>